IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9388-d1168469.html
   My bibliography  Save this article

An Approach to Understanding the Hydration of Cement-Based Composites Reinforced with Untreated Natural Fibers

Author

Listed:
  • Joan Llorens

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Fernando Julián

    (LEPAMAP-PRODIS Research Group, Department of Organization, Business Management and Product Design, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Ester Gifra

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Francesc X. Espinach

    (LEPAMAP-PRODIS Research Group, Department of Organization, Business Management and Product Design, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Jordi Soler

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

  • Miquel Àngel Chamorro

    (CATS Research Group, Department of Architecture and Construction Engineering, University of Girona, Avda Mª Aurelia Capmany 61, 17071 Girona, Spain)

Abstract

The use of untreated natural fibers to reinforce cementitious composites improves their environmental friendliness, resulting in a more sustainable material. Moreover, the influence of the untreated natural fibers on the hydration process of Portland cement composites presents some uncertainties. According to the literature, the most usual tests to analyze the degree of hydration of cement composites are the differential thermal and thermogravimetric analyses (TGA/dTGA). Several authors propose to analyze data methods to establish the degree of hydration of cement composites. This paper presents the TGA/dTGA test carried out on mortar samples with and without fibers at age 2, 3, 7, 14, and 28 days. The degree of hydration was calculated according to Bhatty’s method. To characterize the raw materials, the quantitative chemical was determined using scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM–EDX). The main findings of this study were that the presence of untreated natural hemp fibers in the OPC composites increased the hydration degree by 9%. The presence of fibers affected the formation of several components. Thus, their presence increased the formation of monosulphate, reduced portlandite, did not affect ettringite, and increased the formation of calcite, thereby improving the sustainable footprint due to the increased CO 2 fixation.

Suggested Citation

  • Joan Llorens & Fernando Julián & Ester Gifra & Francesc X. Espinach & Jordi Soler & Miquel Àngel Chamorro, 2023. "An Approach to Understanding the Hydration of Cement-Based Composites Reinforced with Untreated Natural Fibers," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9388-:d:1168469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9388/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9388/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Azree Othuman Mydin & Mohd Nasrun Mohd Nawi & Ruba A. Odeh & Anas A. Salameh, 2022. "Potential of Biomass Frond Fiber on Mechanical Properties of Green Foamed Concrete," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    2. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    2. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    3. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    4. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    5. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    6. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    7. Pereira, S. & Costa, M., 2017. "Short rotation coppice for bioenergy: From biomass characterization to establishment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1170-1180.
    8. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.
    9. Joanna Wnorowska & Szymon Ciukaj & Sylwester Kalisz, 2021. "Thermogravimetric Analysis of Solid Biofuels with Additive under Air Atmosphere," Energies, MDPI, vol. 14(8), pages 1-19, April.
    10. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    11. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses," Energy, Elsevier, vol. 71(C), pages 456-467.
    12. Gabriel Fernando García Sánchez & Rolando Enrique Guzmán López & Roberto Alonso Gonzalez-Lezcano, 2021. "Fique as a Sustainable Material and Thermal Insulation for Buildings: Study of Its Decomposition and Thermal Conductivity," Sustainability, MDPI, vol. 13(13), pages 1-12, July.
    13. Park, Young-Kwon & Jung, Jaehun & Ryu, Sumin & Lee, Hyung Won & Siddiqui, Muhammad Zain & Jae, Jungho & Watanabe, Atsushi & Kim, Young-Min, 2019. "Catalytic co-pyrolysis of yellow poplar wood and polyethylene terephthalate over two stage calcium oxide-ZSM-5," Applied Energy, Elsevier, vol. 250(C), pages 1706-1718.
    14. Manos, Basil & Bartocci, Pietro & Partalidou, Maria & Fantozzi, Francesco & Arampatzis, Stratos, 2014. "Review of public–private partnerships in agro-energy districts in Southern Europe: The cases of Greece and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 667-678.
    15. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    16. Anukam, Anthony & Mamphweli, Sampson & Reddy, Prashant & Meyer, Edson & Okoh, Omobola, 2016. "Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 775-801.
    17. Lelis Gonzaga Fraga & João Silva & Senhorinha Teixeira & Delfim Soares & Manuel Ferreira & José Teixeira, 2020. "Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(11), pages 1-22, June.
    18. Paethanom, A. & Bartocci, P. & D’ Alessandro, B. & D’ Amico, M. & Testarmata, F. & Moriconi, N. & Slopiecka, K. & Yoshikawa, K. & Fantozzi, F., 2013. "A low-cost pyrogas cleaning system for power generation: Scaling up from lab to pilot," Applied Energy, Elsevier, vol. 111(C), pages 1080-1088.
    19. Rezaei, Hamid & Sokhansanj, Shahab & Bi, Xiaotao & Lim, C. Jim & Lau, Anthony, 2017. "A numerical and experimental study on fast pyrolysis of single woody biomass particles," Applied Energy, Elsevier, vol. 198(C), pages 320-331.
    20. Papari, Sadegh & Hawboldt, Kelly, 2015. "A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1580-1595.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9388-:d:1168469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.