IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8199-d1149716.html
   My bibliography  Save this article

Water and Carbon Footprints of Biomass Production Assets: Drip and Center Pivot Irrigation Systems

Author

Listed:
  • Graciele Angnes

    (Laboratory of Systemic Management and Sustainability, Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, Brazil)

  • Adriano Valentim Diotto

    (Department of Water Resources, College of Engineering, Federal University of Lavras—UFLA, Lavras 37203-202, Brazil)

  • Efthymios Rodias

    (Institute for Bio-Economy and Agri-Technology (iBO), Centre for Research and Technology—Hellas (CERTH), 11527 Athens, Greece)

  • Thiago Libório Romanelli

    (Laboratory of Systemic Management and Sustainability, Department of Biosystems Engineering, “Luiz de Queiroz” College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, Brazil)

Abstract

Studies on the environmental footprints of agricultural production have strong links with 4 out of the 17 Sustainable Development Goals (SDG) established by the United Nations. Irrigation systems are essential tools for increasing agricultural yields, particularly in arid regions. However, the production and assembly of these systems can have significant environmental impacts, including excessive water consumption and greenhouse gas emissions. Although studies have approached biomass production, few of them have provided data about asset depreciation, such as irrigation systems, machinery, etc. Trying to fill this gap, this study aimed at determining the water and carbon footprints of two commonly used irrigation systems: center pivot and drip. Several variables, including the irrigated area, pump power, filter type, system flow, and pipe length, were analyzed to determine the carbon and water footprints of each component of the irrigation systems. The results reveal that the materials used for pipes and filters had the most significant impact on the water and carbon footprints, with galvanized steel pipes and sand filters having the highest footprints. Additionally, the irrigated area affected the center pivot and drip systems differently, with the depreciation of the irrigation systems being a significant variable for both water and carbon footprints. These results can support the development of sustainable irrigation practices that reduce environmental impacts while enhancing agricultural yields. Decision-makers can use this information to establish a life-cycle database and evaluate the impact of irrigation systems on water and carbon footprints.

Suggested Citation

  • Graciele Angnes & Adriano Valentim Diotto & Efthymios Rodias & Thiago Libório Romanelli, 2023. "Water and Carbon Footprints of Biomass Production Assets: Drip and Center Pivot Irrigation Systems," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8199-:d:1149716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    2. Maria G. Lampridi & Claus G. Sørensen & Dionysis Bochtis, 2019. "Agricultural Sustainability: A Review of Concepts and Methods," Sustainability, MDPI, vol. 11(18), pages 1-27, September.
    3. Sandra Ricart & Sylvie Clarimont, 2017. "Qualifying irrigation system sustainability and governance by means of stakeholder perceptions: the Neste Canal (France)," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(6), pages 935-954, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eirini Aivazidou & Naoum Tsolakis, 2023. "Water Management and Environmental Engineering: Current Practices and Opportunities," Sustainability, MDPI, vol. 15(15), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    2. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    4. Alfredo Valdes Ramos & Elsa N. Aguilera Gonzalez & Gloria Tobón Echeverri & Luis Samaniego Moreno & Lourdes Díaz Jiménez & Salvador Carlos Hernández, 2019. "Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    5. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    6. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    7. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    8. Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
    9. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    10. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    11. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    12. Charisios Achillas & Dionysis Bochtis, 2020. "Toward a Green, Closed-Loop, Circular Bioeconomy: Boosting the Performance Efficiency of Circular Business Models," Sustainability, MDPI, vol. 12(23), pages 1-6, December.
    13. Leandra R. Gonçalves & Mayara Oliveira & Alexander Turra, 2020. "Assessing the Complexity of Social-Ecological Systems: Taking Stock of the Cross-Scale Dependence," Sustainability, MDPI, vol. 12(15), pages 1-22, August.
    14. Theodora Angelopoulou & Athanasios Balafoutis & George Zalidis & Dionysis Bochtis, 2020. "From Laboratory to Proximal Sensing Spectroscopy for Soil Organic Carbon Estimation—A Review," Sustainability, MDPI, vol. 12(2), pages 1-24, January.
    15. Maria Lampridi & Dimitrios Kateris & Claus Grøn Sørensen & Dionysis Bochtis, 2020. "Energy Footprint of Mechanized Agricultural Operations," Energies, MDPI, vol. 13(3), pages 1-15, February.
    16. Cheng, Minghan & Jiao, Xiyun & Liu, Yadong & Shao, Mingchao & Yu, Xun & Bai, Yi & Wang, Zixu & Wang, Siyu & Tuohuti, Nuremanguli & Liu, Shuaibing & Shi, Lei & Yin, Dameng & Huang, Xiao & Nie, Chenwei , 2022. "Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning," Agricultural Water Management, Elsevier, vol. 264(C).
    17. Irene Tzouramani & Stamatis Mantziaris & Pavlos Karanikolas, 2020. "Assessing Sustainability Performance at the Farm Level: Examples from Greek Agricultural Systems," Sustainability, MDPI, vol. 12(7), pages 1-22, April.
    18. Bino Paul & Unmesh Patnaik & Subash Sasidharan & Kamal Kumar Murari & Chandra Sekhar Bahinipati, 2022. "Fertilizer Use, Value, and Knowledge Capital: A Case of Indian Farming," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    19. Selbonne, S. & Guindé, L. & Belmadani, A. & Bonine, C. & L. Causeret, F. & Duval, M. & Sierra, J. & Blazy, J.M., 2022. "Designing scenarios for upscaling climate-smart agriculture on a small tropical island," Agricultural Systems, Elsevier, vol. 199(C).
    20. Gniewko Niedbała & Anna Jęczmyk & Ryszard Steppa & Jarosław Uglis, 2020. "Linking of Traditional Food and Tourism. The Best Pork of Wielkopolska—Culinary Tourist Trail: A Case Study," Sustainability, MDPI, vol. 12(13), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8199-:d:1149716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.