IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7825-d1143679.html
   My bibliography  Save this article

Quantifying the Environmental Impact of Vehicle Emissions Due to Traffic Diversion Plans for Road Infrastructure Construction Projects: A Case Study in China

Author

Listed:
  • Mingjun Ma

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing 400045, China
    No.3 Construction Corporation Limited of Chongqing Construction Engineering Group, Chongqing 401122, China)

  • Meng Liu

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing 400045, China)

  • Ziqiao Li

    (School of Civil Engineering, Chongqing University, Chongqing 400045, China
    National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology, Chongqing University, Chongqing 400045, China)

Abstract

Current LCA-based environmental impact assessments rarely consider the environmental impact of traffic network deterioration due to temporary road closures during road infrastructure construction processes. This study proposes a quantification method to evaluate the environmental impact of traffic diversions during the road infrastructure construction process. The environmental impact assessment method ReCiPe 2016 was selected to evaluate the environmental impact of pollutant emissions from deteriorated traffic conditions. Ten types of traffic emissions were estimated by emission factors and traffic conditions. A case study quantified the potential environmental impact of traffic emissions resulting from four diversion plans based on an actual bridge-construction case study in Chongqing city of China. Results revealed that different diversion plans could lead to different final environmental impacts. “Global warming” dominated both “Human health” and “Ecosystems” impacts. In the “Human health” category, more than 95% of the environmental impact was contributed by global warming. Similarly, the impact of “Global warming” was higher than 75% in the “Ecosystems” category. CO 2 emissions were the main contributor to the overall “Global warming” impact in all four diversion plans. The traffic speed under traffic diversions before and during road infrastructure construction processes is the major factor influencing the overall environmental impact (endpoint).

Suggested Citation

  • Mingjun Ma & Meng Liu & Ziqiao Li, 2023. "Quantifying the Environmental Impact of Vehicle Emissions Due to Traffic Diversion Plans for Road Infrastructure Construction Projects: A Case Study in China," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7825-:d:1143679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian Wu & Mengbo Zhang & Xunmin Ou, 2014. "Analysis of Future Vehicle Energy Demand in China Based on a Gompertz Function Method and Computable General Equilibrium Model," Energies, MDPI, vol. 7(11), pages 1-29, November.
    2. Shoshanna Saxe & Dena Kasraian, 2020. "Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1031-1046, October.
    3. Santero, Nicholas J. & Masanet, Eric & Horvath, Arpad, 2011. "Life-cycle assessment of pavements. Part I: Critical review," Resources, Conservation & Recycling, Elsevier, vol. 55(9), pages 801-809.
    4. Mingjun Ma & Ziqiao Li & Kai Xue & Meng Liu, 2021. "Exergy-Based Life Cycle Assessment Model for Evaluating the Environmental Impact of Bridge: Principle and Case Study," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    5. Leslie C. Edie, 1961. "Car-Following and Steady-State Theory for Noncongested Traffic," Operations Research, INFORMS, vol. 9(1), pages 66-76, February.
    6. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anne de Bortoli & Maxime Agez, 2023. "Environmentally-Extended Input-Output analyses efficiently sketch large-scale environmental transition plans -- illustration by Canada's road industry," Papers 2301.08302, arXiv.org.
    2. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    4. Chen, Yu & Zhao, Changyi & Chen, Shan & Chen, Wenqing & Wan, Kunyang & Wei, Jia, 2023. "Riding the green rails: Exploring the nexus between high-speed trains, green innovation, and carbon emissions," Energy, Elsevier, vol. 282(C).
    5. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    6. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Ahmad Jrade & Farnaz Jalaei & Jieying Jane Zhang & Saeed Jalilzadeh Eirdmousa & Farzad Jalaei, 2023. "Potential Integration of Bridge Information Modeling and Life Cycle Assessment/Life Cycle Costing Tools for Infrastructure Projects within Construction 4.0: A Review," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    8. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    9. Liang Nie & ZhongXiang Zhang, 2021. "Is high-speed rail green? Evidence from a quasi-natural experiment in China," Working Papers 2021.23, Fondazione Eni Enrico Mattei.
    10. James Kaizuka, 2021. "Even Electric Trains Use Coal: Fixed and Relative Costs, Hidden Factors and Income Inequality in HSR Projects with Reference to Vietnam’s North–South Express Railway," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
    11. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    12. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    13. Xiaoqin Chen & Shenya Mao & Siqi Lv & Zhong Fang, 2022. "A Study on the Non-Linear Impact of Digital Technology Innovation on Carbon Emissions in the Transportation Industry," IJERPH, MDPI, vol. 19(19), pages 1-18, September.
    14. Mulian Zheng & Wang Chen & Xiaoyan Ding & Wenwu Zhang & Sixin Yu, 2021. "Comprehensive Life Cycle Environmental Assessment of Preventive Maintenance Techniques for Asphalt Pavement," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    15. Mazaré, Pierre-Emmanuel & Dehwah, Ahmad H. & Claudel, Christian G. & Bayen, Alexandre M., 2011. "Analytical and grid-free solutions to the Lighthill–Whitham–Richards traffic flow model," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1727-1748.
    16. ZhiWu Zhou & Julián Alcalá & Víctor Yepes, 2020. "Environmental, Economic and Social Impact Assessment: Study of Bridges in China’s Five Major Economic Regions," IJERPH, MDPI, vol. 18(1), pages 1-33, December.
    17. Cheng Lin & Zhifeng Xu, 2015. "Wheel Torque Distribution of Four-Wheel-Drive Electric Vehicles Based on Multi-Objective Optimization," Energies, MDPI, vol. 8(5), pages 1-17, April.
    18. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
    19. Jun Xie & Zhihu Wang & Fusong Wang & Shaopeng Wu & Zongwu Chen & Chao Yang, 2021. "The Life Cycle Energy Consumption and Emissions of Asphalt Pavement Incorporating Basic Oxygen Furnace Slag by Comparative Study," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    20. Lian Lian & Wen Tian & Hongfeng Xu & Menglan Zheng, 2018. "Modeling and Forecasting Passenger Car Ownership Based on Symbolic Regression," Sustainability, MDPI, vol. 10(7), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7825-:d:1143679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.