IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i6p3440-d771664.html
   My bibliography  Save this article

Climate Change and Overuse: Water Resource Challenges during Economic Growth in Coquimbo, Chile

Author

Listed:
  • Roberto Pizarro

    (Cátedra Unesco en Hidrología de Superficie, Universidad de Talca, Talca 3460000, Chile
    Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago 3580000, Chile)

  • Pablo A. Garcia-Chevesich

    (Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
    Intergovernmental Hydrological Program, United Nations Educational, Scientific and Cultural Organization, Montevideo 11200, Uruguay)

  • John E. McCray

    (Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA)

  • Jonathan O. Sharp

    (Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA)

  • Rodrigo Valdés-Pineda

    (Piteau Associates, Water Management Group, Tucson, AZ 85716, USA
    Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA)

  • Claudia Sangüesa

    (Cátedra Unesco en Hidrología de Superficie, Universidad de Talca, Talca 3460000, Chile
    Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago 3580000, Chile)

  • Dayana Jaque-Becerra

    (School of Forest Engineering, University of Talca, Talca 3460000, Chile)

  • Pablo Álvarez

    (Laboratorio PROMMRA, Universidad de La Serena, La Serena 1700000, Chile)

  • Sebastián Norambuena

    (Laboratorio PROMMRA, Universidad de La Serena, La Serena 1700000, Chile)

  • Alfredo Ibáñez

    (Centro Nacional de Excelencia para la Industria de la Madera (CENAMAD), Pontificia Universidad Católica de Chile, Santiago 3580000, Chile)

  • Carlos Vallejos

    (Independent Researcher, Talca 3460000, Chile)

  • Romina Mendoza

    (Cátedra Unesco en Hidrología de Superficie, Universidad de Talca, Talca 3460000, Chile)

Abstract

The arid Coquimbo region of Chile has experienced a significant economic growth in recent decades, fueled in large part by water-intensive activities such as mining and agriculture. Under this context, a monthly and annual trend analysis of precipitation, streamflow, and piezometric levels was carried out. Thus, 43 pluviometric stations, 11 fluviometric stations, and 11 wells were selected. These stations were evaluated for their temporal trends using the Mann–Kendall test. Results revealed a significant decrease in river flows, with negative and significant trends concentrated in the mean and maximum flows, both at annual and monthly levels. Likewise, positive trends were found in the depth to water table on wells, with significant trends in 81.8% of the monthly cases, and in 72.7% of the annual cases. While also decreasing over the same period, rainfall trends exhibit high variability and lacked significance. Although the amounts of precipitation have decreased, this does not seem to be the main factor responsible for the scarcity of water in the region, but rather an excessive consumption of this resource. This is endorsed by the increase in GDP (Gross Domestic Product), which is explained by activities that consume water (mining and agriculture). Similarly, an increase in the granting of underground water rights was verified, which speaks of the high demands for the resource. However, future modeling is advised to better understand the regional hydrology of the area and quantify the anthropic effects on water resources more precisely.

Suggested Citation

  • Roberto Pizarro & Pablo A. Garcia-Chevesich & John E. McCray & Jonathan O. Sharp & Rodrigo Valdés-Pineda & Claudia Sangüesa & Dayana Jaque-Becerra & Pablo Álvarez & Sebastián Norambuena & Alfredo Ibáñ, 2022. "Climate Change and Overuse: Water Resource Challenges during Economic Growth in Coquimbo, Chile," Sustainability, MDPI, vol. 14(6), pages 1-10, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3440-:d:771664
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/6/3440/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/6/3440/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2014. "Looking backward to look forward: water use and economic growth from a long-term perspective," Applied Economics, Taylor & Francis Journals, vol. 46(2), pages 212-224, January.
    2. Douglas Aitken & Diego Rivera & Alex Godoy-Faúndez & Eduardo Holzapfel, 2016. "Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile," Sustainability, MDPI, vol. 8(2), pages 1-18, February.
    3. Pablo Sarricolea & Mariajosé Herrera-Ossandon & Óliver Meseguer-Ruiz, 2017. "Climatic regionalisation of continental Chile," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 66-73, November.
    4. Sarfaraz Alam & Mekonnen Gebremichael & Ruopu Li & Jeff Dozier & Dennis P. Lettenmaier, 2019. "Climate change impacts on groundwater storage in the Central Valley, California," Climatic Change, Springer, vol. 157(3), pages 387-406, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Aversa & Nino Adamashvili & Mariantonietta Fiore & Alessia Spada, 2022. "Scoping Review (SR) via Text Data Mining on Water Scarcity and Climate Change," Sustainability, MDPI, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dafne Crutchik & José Luis Campos, 2021. "Municipal Wastewater Reuse: Is it a Competitive Alternative to Seawater Desalination?," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    2. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2015. "Global water in a global world a long term study on agricultural virtual water flows in the world," Documentos de Trabajo dt2015-03, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    3. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    4. World Bank, 2020. "Chile’s Forests," World Bank Publications - Reports 33894, The World Bank Group.
    5. Bali, Khaled M. & Mohamed, Abdelmoneim Zakaria & Begna, Sultan & Wang, Dong & Putnam, Daniel & Dahlke, Helen E. & Eltarabily, Mohamed Galal, 2023. "The use of HYDRUS-2D to simulate intermittent Agricultural Managed Aquifer Recharge (Ag-MAR) in Alfalfa in the San Joaquin Valley," Agricultural Water Management, Elsevier, vol. 282(C).
    6. Zack Dorner & Daniel A. Brent & Anke Leroux, 2019. "Preferences for Intrinsically Risky Attributes," Land Economics, University of Wisconsin Press, vol. 95(4), pages 494-514.
    7. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    8. Matías Calderón-Seguel & Manuel Prieto & Oliver Meseguer-Ruiz & Freddy Viñales & Paulina Hidalgo & Elías Esper, 2021. "Mining, Urban Growth, and Agrarian Changes in the Atacama Desert: The Case of the Calama Oasis in Northern Chile," Land, MDPI, vol. 10(11), pages 1-21, November.
    9. Barbara Ruffino & Giuseppe Campo & Dafne Crutchik & Arturo Reyes & Mariachiara Zanetti, 2022. "Drinking Water Supply in the Region of Antofagasta (Chile): A Challenge between Past, Present and Future," IJERPH, MDPI, vol. 19(21), pages 1-21, November.
    10. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The water footprint of the Spanish agricultural sector: 1860–2010," Ecological Economics, Elsevier, vol. 108(C), pages 200-207.
    11. Angelo Antoci & Paolo Russu & Elisa Ticci, 2019. "Mining and Local Economies: Dilemma between Environmental Protection and Job Opportunities," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    12. Chih-Hao Wang & Hongwei Dong, 2017. "Responding to the Drought: A Spatial Statistical Approach to Investigating Residential Water Consumption in Fresno, California," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    13. Bach, Vanessa & Finogenova, Natalia & Berger, Markus & Winter, Lisa & Finkbeiner, Matthias, 2017. "Enhancing the assessment of critical resource use at the country level with the SCARCE method – Case study of Germany," Resources Policy, Elsevier, vol. 53(C), pages 283-299.
    14. Dorner, Zach & Brent, Daniel A. & Leroux, Anke, 2016. "Eliciting Risk Preferences for Intrinsic Attributes," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236644, Agricultural and Applied Economics Association.
    15. Manuschevich, Daniela & Sarricolea, Pablo & Galleguillos, Mauricio, 2019. "Integrating socio-ecological dynamics into land use policy outcomes: A spatial scenario approach for native forest conservation in south-central Chile," Land Use Policy, Elsevier, vol. 84(C), pages 31-42.
    16. David Talbot & Guillaume Barbat, 2020. "Water disclosure in the mining sector: An assessment of the credibility of sustainability reports," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(3), pages 1241-1251, May.
    17. Viviana Tudela & Pablo Sarricolea & Roberto Serrano-Notivoli & Oliver Meseguer-Ruiz, 2023. "A pilot study for climate risk assessment in agriculture: a climate-based index for cherry trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 163-185, January.
    18. Diana Mancilla-Ruiz & Francisco de la Barrera & Sergio González & Ana Huaico, 2021. "The Effects of a Megafire on Ecosystem Services and the Pace of Landscape Recovery," Land, MDPI, vol. 10(12), pages 1-16, December.
    19. Leonor Zapién Zapién Serrano & Noemí Ortiz Ortiz Lara & Rafael Ríos Ríos Vera & Diana Cholico-González, 2021. "Removal of Fe(III), Cd(II), and Zn(II) as Hydroxides by Precipitation–Flotation System," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    20. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2014. "The effect of globalisation on water consumption: A case study of the Spanish virtual water trade, 1849–1935," Ecological Economics, Elsevier, vol. 100(C), pages 96-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:6:p:3440-:d:771664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.