IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i2p606-d718967.html
   My bibliography  Save this article

Resilience of Social-Infrastructural Systems: Functional Interdependencies Analysis

Author

Listed:
  • Zhuyu Yang

    (Lab’Urba, Université Gustave Eiffel, 77420 Marne-la-Vallée, France
    LATTS, Université Gustave Eiffel, 77420 Marne-la-Vallée, France)

  • Maria Fabrizia Clemente

    (Department of Architecture, University of Naples Federico II, 80134 Campania, Italy)

  • Katia Laffréchine

    (Lab’Urba, Université Gustave Eiffel, 77420 Marne-la-Vallée, France)

  • Charlotte Heinzlef

    (CEARC, University Versailles Saint-Quentin-en Yvelines, University Paris Saclay, 78280 Avignon, France)

  • Damien Serre

    (UMR 7300 ESPACE, Avignon Université, 84029 Provence, France
    Ecole d’Urbanisme et d’Architecture du Paysage, Ariaction, Université de Montréal, Montréal, QC H3T, Canada)

  • Bruno Barroca

    (Lab’Urba, Université Gustave Eiffel, 77420 Marne-la-Vallée, France)

Abstract

Critical infrastructures serve human activities and play an essential role in societies. Infrastructural systems are not isolated but are interdependent with regard to social systems, including those of public health and economic and sustainable development. In recent years, both social and infrastructural systems have frequently been in dysfunction due to increasing natural or human-made disasters and due to the internal and external dependencies between system components. The interconnectedness between social-infrastructural systems (socio-economic systems and technical-infrastructural systems), implies that the damage to one single system can extend beyond its scope. For that reason, cascading dysfunction can occur and increase system vulnerability. This article aims to study the functional interdependencies between social-infrastructural systems and to propose a methodology to analyse and improve the resilience of these systems. Combining Actor Network Theory and the Functional Models approach, the social-infrastructural Interdependence Resilience (SIIR) framework was proposed. To assess the applicability of the approach, the framework was applied to study the interdependence of a social-infrastructural system in the Nantes Metropolis. The studied system was composed of the local Highway Infrastructure (an infrastructural system) and the Emergency Medical Service (a social system). The results (1) show the feasibility of SIIR for investigating the interdependencies of two urban systems, and (2) provide a guideline for decision-makers to improve the functional interdependencies of urban systems.

Suggested Citation

  • Zhuyu Yang & Maria Fabrizia Clemente & Katia Laffréchine & Charlotte Heinzlef & Damien Serre & Bruno Barroca, 2022. "Resilience of Social-Infrastructural Systems: Functional Interdependencies Analysis," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:606-:d:718967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/2/606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/2/606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuyu Yang & Bruno Barroca & Katia Laffréchine & Alexandre Weppe & Aurélia Bony-Dandrieux & Nicolas Daclin, 2023. "A multi-criteria framework for critical infrastructure systems resilience," Post-Print hal-04135558, HAL.
    2. Guiyuan Li & Guo Cheng & Zhenying Wu & Xiaoxiao Liu, 2022. "Coupling Coordination Research on Disaster-Adapted Resilience of Modern Infrastructure System in the Middle and Lower Section of the Three Gorges Reservoir Area," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    3. Yang, Zhuyu & Barroca, Bruno & Laffréchine, Katia & Weppe, Alexandre & Bony-Dandrieux, Aurélia & Daclin, Nicolas, 2023. "A multi-criteria framework for critical infrastructure systems resilience," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    4. Xu Li & Bin Lv & Binke Lang & Qixiang Chen, 2022. "Exploring the Cascading Failure in Taxi Transportation Networks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    2. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    5. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    6. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    7. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    8. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    9. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.
    10. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    11. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    12. Thompson, James R. & Frezza, Damon & Necioglu, Burhan & Cohen, Michael L. & Hoffman, Kenneth & Rosfjord, Kristine, 2019. "Interdependent Critical Infrastructure Model (ICIM): An agent-based model of power and water infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 144-165.
    13. Dubaniowski, Mateusz Iwo & Heinimann, Hans Rudolf, 2021. "Framework for modeling interdependencies between households, businesses, and infrastructure system, and their response to disruptions—application," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    15. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. Liu, Xiaoxue & Zhang, Jiexin & Zhu, Peidong, 2017. "Modeling cyber-physical attacks based on probabilistic colored Petri nets and mixed-strategy game theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 16(C), pages 13-25.
    17. Zhao, Yixin & Cai, Baoping & Kang, Henry Hooi-Siang & Liu, Yiliu, 2023. "Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    19. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Edward J. Oughton & Daniel Ralph & Raghav Pant & Eireann Leverett & Jennifer Copic & Scott Thacker & Rabia Dada & Simon Ruffle & Michelle Tuveson & Jim W Hall, 2019. "Stochastic Counterfactual Risk Analysis for the Vulnerability Assessment of Cyber‐Physical Attacks on Electricity Distribution Infrastructure Networks," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2012-2031, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:2:p:606-:d:718967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.