IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021001848.html
   My bibliography  Save this article

Feasibility study of PRA for critical infrastructure risk analysis

Author

Listed:
  • Johnson, Caroline A.
  • Flage, Roger
  • Guikema, Seth D.

Abstract

Probabilistic Risk Analysis (PRA) has been commonly used by NASA and the nuclear power industry to assess risk since the 1970s. However, PRA is not commonly used to assess risk in networked infrastructure systems such as water, sewer and power systems. Other methods which utilise network models of infrastructure such as random and targeted attack failure analysis, N-k analysis and statistical learning theory are instead used to analyse system performance when a disruption occurs. Such methods have the advantage of being simpler to implement than PRA. This paper explores the feasibility of a full PRA of infrastructure, that is one that analyses all possible scenarios as well as the associated likelihoods and consequences. Such analysis is resource intensive and quickly becomes complex for even small systems. Comparing the previously mentioned more commonly used methods to PRA provides insight into how current practises can be improved, bringing the results closer to those that would be presented from PRA. Although a full PRA of infrastructure systems may not be feasible, PRA should not be discarded. Instead, analysis of such systems should be carried out using the framework of PRA to include vital elements such as scenario likelihood analysis which are often overlooked.

Suggested Citation

  • Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001848
    DOI: 10.1016/j.ress.2021.107643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
    2. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    3. George E. Apostolakis, 2004. "How Useful Is Quantitative Risk Assessment?," Risk Analysis, John Wiley & Sons, vol. 24(3), pages 515-520, June.
    4. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2019. "Characterising the robustness of coupled power-law networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Sotirios A. Argyroudis & Stavroula Fotopoulou & Stella Karafagka & Kyriazis Pitilakis & Jacopo Selva & Ernesto Salzano & Anna Basco & Helen Crowley & Daniela Rodrigues & José P. Matos & Anton J. Schle, 2020. "A risk-based multi-level stress test methodology: application to six critical non-nuclear infrastructures in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 595-633, January.
    6. Jacopo Selva, 2013. "Long-term multi-risk assessment: statistical treatment of interaction among risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 701-722, June.
    7. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    8. Johansson, Jonas & Hassel, Henrik, 2010. "An approach for modelling interdependent infrastructures in the context of vulnerability analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1335-1344.
    9. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    10. Winkler, James & Dueñas-Osorio, Leonardo & Stein, Robert & Subramanian, Devika, 2010. "Performance assessment of topologically diverse power systems subjected to hurricane events," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 323-336.
    11. Rob Lamb & Paige Garside & Raghav Pant & Jim W. Hall, 2019. "A Probabilistic Model of the Economic Risk to Britain's Railway Network from Bridge Scour During Floods," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2457-2478, November.
    12. Han, Seung-Ryong & Guikema, Seth D. & Quiring, Steven M. & Lee, Kyung-Ho & Rosowsky, David & Davidson, Rachel A., 2009. "Estimating the spatial distribution of power outages during hurricanes in the Gulf coast region," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 199-210.
    13. Sullivan, J.L. & Novak, D.C. & Aultman-Hall, L. & Scott, D.M., 2010. "Identifying critical road segments and measuring system-wide robustness in transportation networks with isolating links: A link-based capacity-reduction approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 323-336, June.
    14. LaRocca, Sarah & Guikema, Seth D., 2015. "Characterizing and predicting the robustness of power-law networks," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 157-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    3. Kamali, Behnaz & Ziaei, Ali Naghi & Beheshti, Aliasghar & Farmani, Raziyeh, 2022. "An open-source toolbox for investigating functional resilience in sewer networks based on global resilience analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Yibo Dong & Jin Liu & Jiaqi Ren & Zhe Li & Weili Li, 2023. "Protecting Infrastructure Networks: Solving the Stackelberg Game with Interval-Valued Intuitionistic Fuzzy Number Payoffs," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
    5. Maturana, Marcos Coelho & Martins, Marcelo Ramos & Frutuoso e Melo, Paulo Fernando Ferreira, 2021. "Application of a quantitative human performance model to the operational procedure design of a fuel storage pool cooling system," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Chao Zhang & Wan Wang & Fengjiao Xu & Yong Chen & Tingxin Qin, 2022. "A Risk Treatment Strategy Model for Oil Pipeline Accidents Based on a Bayesian Decision Network Model," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    7. Lilli, Giordano & Sanavia, Matteo & Oboe, Roberto & Vianello, Chiara & Manzolaro, Mattia & De Ruvo, Pasquale Luca & Andrighetto, Alberto, 2024. "A semi-quantitative risk assessment of remote handling operations on the SPES Front-End based on HAZOP-LOPA," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Tao, Longlong & Chen, Liwei & Ge, Daochuan & Yao, Yuantao & Ruan, Fang & Wu, Jie & Yu, Jie, 2022. "An integrated probabilistic risk assessment methodology for maritime transportation of spent nuclear fuel based on event tree and hydrodynamic model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seth Guikema, 2020. "Artificial Intelligence for Natural Hazards Risk Analysis: Potential, Challenges, and Research Needs," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1117-1123, June.
    2. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    3. Stødle, Kaia & Metcalfe, Caroline A. & Brunner, Logan G. & Saliani, Julian N. & Flage, Roger & Guikema, Seth D., 2021. "Dependent infrastructure system modeling: A case study of the St. Kitts power and water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    5. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    6. Pitilakis, Kyriazis & Argyroudis, Sotiris & Fotopoulou, Stavroula & Karafagka, Stella & Kakderi, Kalliopi & Selva, Jacopo, 2019. "Application of stress test concepts for port infrastructures against natural hazards. The case of Thessaloniki port in Greece," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 240-257.
    7. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2019. "Characterising the robustness of coupled power-law networks," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Jingjing Kong & Slobodan P. Simonovic, 2019. "Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System," Risk Analysis, John Wiley & Sons, vol. 39(8), pages 1843-1863, August.
    9. Mukherjee, Sayanti & Nateghi, Roshanak & Hastak, Makarand, 2018. "A multi-hazard approach to assess severe weather-induced major power outage risks in the U.S," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 283-305.
    10. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    11. Zhao, Chen & Li, Nan & Fang, Dongping, 2018. "Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm and a multilayer weighted directed network model," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 100-112.
    12. Ouyang, Min & Dueñas-Osorio, Leonardo, 2011. "An approach to design interface topologies across interdependent urban infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1462-1473.
    13. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    14. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    15. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    17. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    18. Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    19. Dylan Sanderson & Sabarethinam Kameshwar & Nathanael Rosenheim & Daniel Cox, 2021. "Deaggregation of multi-hazard damages, losses, risks, and connectivity: an application to the joint seismic-tsunami hazard at Seaside, Oregon," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1821-1847, November.
    20. Heracleous, Constantinos & Kolios, Panayiotis & Panayiotou, Christos G. & Ellinas, Georgios & Polycarpou, Marios M., 2017. "Hybrid systems modeling for critical infrastructures interdependency analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 89-101.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.