IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p15612-d982638.html
   My bibliography  Save this article

Application of Geodesign Techniques for Ecological Engineered Landscaping of Urban River Wetlands: A Case Study of Yuhangtang River

Author

Listed:
  • Tianjie Li

    (Department of Environmental Design, School of Design and Architecture, Zhejiang University of Technology, 288 Liuhe Rd., West Lake District, Hangzhou 310023, China)

  • Yan Huang

    (Department of Environmental Design, School of Design and Architecture, Zhejiang University of Technology, 288 Liuhe Rd., West Lake District, Hangzhou 310023, China)

  • Chaoguang Gu

    (Beijing Enterprises Water Group Co., Ltd. (Company of Eastern Region), 108 Yunlian Rd., Yuhang District, Hangzhou 311121, China)

  • Fangbo Qiu

    (Beijing Enterprises Water Group Co., Ltd. (Company of Eastern Region), 108 Yunlian Rd., Yuhang District, Hangzhou 311121, China)

Abstract

Although geodesign techniques have been studied and developed worldwide, there is still a lack of in-depth application of geodesign workflows for redesigning urban river wetlands with characteristics of ecologically engineered landscaping (EEL). The study mainly aims at putting forward a proper approach in the methodological foundation for EEL practices in river wetlands. A typical EEL-oriented project of river restoration in Hangzhou, China, was conducted in this study. Based on in-situ geodata and tools within QGIS, individual geological factors analysis, with the hierarchical analysis method (AHP) and ecological vulnerability evaluation (EVE), was conducted by experts’ voting and the weighted linear combination (WLC) method. Analysis of hydrological-related factors proceeded. This GIS-based analysis with expert knowledge provided comprehensive redesign solutions for the redesign project, i.e., restoration of the riverbed, spatial restoration in the horizontal and vertical dimensions, and integration with the multifunctional design. Detailed three-dimensional models for design practices were developed to present redesigned topology and space accordingly. Terrain, inundation, and visibility analysis proceeded with parametric mapping programs within Grasshopper to check the feasibility. The adapted geodesign-based workflow in the study also applies to the site analysis, sustainable assessment and landscape planning for urban wetlands EEL projects.

Suggested Citation

  • Tianjie Li & Yan Huang & Chaoguang Gu & Fangbo Qiu, 2022. "Application of Geodesign Techniques for Ecological Engineered Landscaping of Urban River Wetlands: A Case Study of Yuhangtang River," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15612-:d:982638
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/15612/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/15612/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu Huang & Weining Xiang & Jianguo Wu & Christoph Traxler & Jingzhou Huang, 2019. "Integrating GeoDesign with Landscape Sustainability Science," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    2. Ripan Debnath & Christopher Pettit & Simone Zarpelon Leao, 2022. "Geodesign Approaches to City Resilience Planning: A Systematic Review," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Carl Steinitz, 2020. "On Landscape Architecture Education and Professional Practice and Their Future Challenges," Land, MDPI, vol. 9(7), pages 1-14, July.
    5. Xiang Wei & Yujuan Zhang & Shuo Feng & Ning Cao, 2022. "Construction and Research of Converged Media Random Matrix Model and Multivariate Evaluation System," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-11, August.
    6. Ling Wang & Mengting Ge & Naiguang Chen & Jiahui Ding & Xiwei Shen, 2022. "An Evaluation Model of Riparian Landscape: A Case in Rural Qingxi Area, Shanghai," Land, MDPI, vol. 11(9), pages 1-19, September.
    7. Mitsch, William J. & Gosselink, James G., 2000. "The value of wetlands: importance of scale and landscape setting," Ecological Economics, Elsevier, vol. 35(1), pages 25-33, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    3. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    4. Nisse Goldberg & Russell L. Watkins, 2021. "Spatial comparisons in wetland loss, mitigation, and flood hazards among watersheds in the lower St. Johns River basin, northeastern Florida, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1743-1757, November.
    5. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    6. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    7. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    8. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    9. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    10. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    11. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    12. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    13. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    14. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    15. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    16. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    17. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    18. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    19. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    20. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:15612-:d:982638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.