IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p14925-d969860.html
   My bibliography  Save this article

Smart Evaluation of Sustainability of Photovoltaic Projects in the Context of Carbon Neutrality Target

Author

Listed:
  • Wei Ding

    (Long Yuan (Beijing) Wind Power Engineering & Consulting Co., Ltd., Beijing 100034, China)

  • Xuguang Zhao

    (Long Yuan (Beijing) Wind Power Engineering & Consulting Co., Ltd., Beijing 100034, China)

  • Weigao Meng

    (School of Urban Geology and Engineering, Hebei GEO University, Shijiazhuang 050031, China)

  • Haichao Wang

    (Long Yuan (Beijing) Wind Power Engineering & Consulting Co., Ltd., Beijing 100034, China)

Abstract

To support the sustainable development of photovoltaic (PV) projects in the context of the carbon neutrality aim, a scientific and reliable evaluation technique is crucial. In this research, an AdaBoost-LS-WSVM intelligent evaluation model built on the Spark platform is suggested to increase evaluation accuracy and timeliness. Firstly, the sustainability evaluation index system of PV projects is constructed from five levels: geographic resource sustainability, technical sustainability, economic sustainability, social sustainability, and environmental sustainability in the context of the carbon neutrality target. Then, the AdaBoost-LS-WSVM intelligent evaluation model with Spark as the platform is constructed, and the wavelet kernel function is applied to the LSSVM model to form the LS-WSVM regression model with stronger nonlinear fitting ability. The learning and training of training samples are completed by the AdaBoost model, and multiple weak LS-WSVM regressors are weighted to get a strong LS-WSVM regressor. The regression model is used for assessing the sustainability of PV projects on Spark Big Data runtime platform. Lastly, the scientific accuracy and reliability of the proposed model is confirmed by a case study, which facilitates a timely and effective assessment of the sustainability of PV projects in the context of carbon neutrality target and can provide scientific and reasonable decision support for the construction of a sustainable development model of PV projects.

Suggested Citation

  • Wei Ding & Xuguang Zhao & Weigao Meng & Haichao Wang, 2022. "Smart Evaluation of Sustainability of Photovoltaic Projects in the Context of Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14925-:d:969860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/14925/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/14925/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Chaofan & Shuai, Jing & Ding, Liping & Lu, Yang & Chen, Jia, 2022. "Comprehensive benefit evaluation of solar PV projects based on multi-criteria decision grey relation projection method: Evidence from 5 counties in China," Energy, Elsevier, vol. 238(PB).
    2. Haichao Wang & Yi Liang & Wei Ding & Dongxiao Niu & Si Li & Fenghua Wang, 2020. "The Improved Least Square Support Vector Machine Based on Wolf Pack Algorithm and Data Inconsistency Rate for Cost Prediction of Substation Projects," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, December.
    3. Iria, José & Scott, Paul & Attarha, Ahmad & Gordon, Dan & Franklin, Evan, 2022. "MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets," Energy, Elsevier, vol. 242(C).
    4. Yi Liang & Haichao Wang, 2021. "Using Improved SPA and ICS-LSSVM for Sustainability Assessment of PV Industry along the Belt and Road," Energies, MDPI, vol. 14(12), pages 1-19, June.
    5. Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
    6. Zheng Lu & Yunfei Chen & Qiaoqiao Fan, 2021. "Study on Feasibility of Photovoltaic Power to Grid Parity in China Based on LCOE," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    7. Hui Li & Fan Li & Rong Jia & Fang Zhai & Liang Bai & Xingqi Luo, 2021. "Research on the Fault Feature Extraction of Rolling Bearings Based on SGMD-CS and the AdaBoost Framework," Energies, MDPI, vol. 14(6), pages 1-19, March.
    8. BumChoong Kim & Juhan Kim & Jinsoo Kim, 2019. "Evaluation Model for Investment in Solar Photovoltaic Power Generation Using Fuzzy Analytic Hierarchy Process," Sustainability, MDPI, vol. 11(10), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Liang & Yingying Fan & Yongfang Peng & Haigang An, 2022. "Smart Grid Project Benefit Evaluation Based on a Hybrid Intelligent Model," Sustainability, MDPI, vol. 14(17), pages 1-20, September.
    2. Yanhua Chang & Yi Liang, 2023. "Intelligent Risk Assessment of Ecological Agriculture Projects from a Vision of Low Carbon," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    3. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    4. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    5. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Nebojsa Bacanin & Catalin Stoean & Miodrag Zivkovic & Miomir Rakic & Roma Strulak-Wójcikiewicz & Ruxandra Stoean, 2023. "On the Benefits of Using Metaheuristics in the Hyperparameter Tuning of Deep Learning Models for Energy Load Forecasting," Energies, MDPI, vol. 16(3), pages 1-21, February.
    8. Suryakiran, B.V. & Nizami, Sohrab & Verma, Ashu & Saha, Tapan Kumar & Mishra, Sukumar, 2023. "A DSO-based day-ahead market mechanism for optimal operational planning of active distribution network," Energy, Elsevier, vol. 282(C).
    9. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    10. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
    11. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    12. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    13. Yin, Yu & Liu, Jicheng, 2022. "Risk assessment of photovoltaic - Energy storage utilization project based on improved Cloud-TODIM in China," Energy, Elsevier, vol. 253(C).
    14. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
    15. Li, Jiaxin & Peng, Jiachao & Shuai, Chuanmin & Wang, Zihan & Huang, Fubin & Khayyam, Muhammad, 2022. "Does the solar PV program enhance the social empowerment of China's rural poor?," Energy, Elsevier, vol. 253(C).
    16. Wang, Kang & Wang, Jianzhou & Zeng, Bo & Lu, Haiyan, 2022. "An integrated power load point-interval forecasting system based on information entropy and multi-objective optimization," Applied Energy, Elsevier, vol. 314(C).
    17. Seyedhossein, Seyed Saeed & Moeini-Aghtaie, Moein, 2022. "Risk management framework of peer-to-peer electricity markets," Energy, Elsevier, vol. 261(PB).
    18. Sungwoo Park & Jihoon Moon & Seungwon Jung & Seungmin Rho & Sung Wook Baik & Eenjun Hwang, 2020. "A Two-Stage Industrial Load Forecasting Scheme for Day-Ahead Combined Cooling, Heating and Power Scheduling," Energies, MDPI, vol. 13(2), pages 1-23, January.
    19. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    20. Somu, Nivethitha & M R, Gauthama Raman & Ramamritham, Krithi, 2020. "A hybrid model for building energy consumption forecasting using long short term memory networks," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:14925-:d:969860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.