IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i21p14210-d959117.html
   My bibliography  Save this article

Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain

Author

Listed:
  • Jiwon Yu

    (Department of Industrial and Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Young Jae Han

    (Railroad Test & Certification Division, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Korea)

  • Hyewon Yang

    (Department of Industrial and Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Sugil Lee

    (Smart Electrical and Signaling Division, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Korea)

  • Gildong Kim

    (Smart Electrical and Signaling Division, Korea Railroad Research Institute, 176 Cheoldobangmulgwan-ro, Uiwang-si 16105, Korea)

  • Chulung Lee

    (School of Industrial and Management Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

Abstract

Hydrogen energy, one of the energy sources of the future, represents a substantial issue which affects the industries and national technologies that will develop in the future. In order to utilize hydrogen energy, a hydrogen supply chain is required so that hydrogen can be processed and transported to vehicles. It is helpful for technology and policy development to analyze technologies necessary to charge the hydrogen energy generated into vehicles through the supply chain to discover technologies with high potential for future development. The purpose of this paper is to identify promising technologies required in storing, transporting, and charging vehicles generated by the hydrogen fuel supply chain. Afterward, the promising technologies identified are expected to help researchers set a direction in researching technologies and developing related policies. Therefore, we provide technology information that can be used promisingly in the future so that researchers in the related field can utilize it effectively. In this paper, data analysis is performed using related patents and research papers for technical analysis. Promising technologies that will be the core of the hydrogen fuel supply chain in the future were identified using the published patents and research paper database (DB) in Korea, the United States, Europe, China, and Japan. A text mining technique was applied to preprocess data, and then a generic topographic map (GTM) analysis discovered promising technologies. Then, a technology roadmap was identified by analyzing the promising technology derived from patents and research papers in parallel. In this study, through the analysis of patents and research papers related to the hydrogen supply chain, the development status of hydrogen storage/transport/charging technology was analyzed, and promising technologies with high potential for future development were found. The technology roadmap derived from the analysis can help researchers in the field of hydrogen research establish policies and research technologies.

Suggested Citation

  • Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14210-:d:959117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/21/14210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/21/14210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dandan Liu & Dewei Yang & Anmin Huang, 2021. "LEAP-Based Greenhouse Gases Emissions Peak and Low Carbon Pathways in China’s Tourist Industry," IJERPH, MDPI, vol. 18(3), pages 1-15, January.
    2. Kim, Hyunwoo & Hong, Suckwon & Kwon, Ohjin & Lee, Changyong, 2017. "Concentric diversification based on technological capabilities: Link analysis of products and technologies," Technological Forecasting and Social Change, Elsevier, vol. 118(C), pages 246-257.
    3. Seo, Seung-Kwon & Yun, Dong-Yeol & Lee, Chul-Jin, 2020. "Design and optimization of a hydrogen supply chain using a centralized storage model," Applied Energy, Elsevier, vol. 262(C).
    4. Koopo Kwon & Sungchan Jun & Yong-Jae Lee & Sanghei Choi & Chulung Lee, 2022. "Logistics Technology Forecasting Framework Using Patent Analysis for Technology Roadmap," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    5. Jeong, Yujin & Park, Inchae & Yoon, Byungun, 2019. "Identifying emerging Research and Business Development (R&BD) areas based on topic modeling and visualization with intellectual property right data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 655-672.
    6. Wickham, David & Hawkes, Adam & Jalil-Vega, Francisca, 2022. "Hydrogen supply chain optimisation for the transport sector – Focus on hydrogen purity and purification requirements," Applied Energy, Elsevier, vol. 305(C).
    7. Marzena Frankowska & Krzysztof Błoński & Marta Mańkowska & Andrzej Rzeczycki, 2022. "Research on the Concept of Hydrogen Supply Chains and Power Grids Powered by Renewable Energy Sources: A Scoping Review with the Use of Text Mining," Energies, MDPI, vol. 15(3), pages 1-26, January.
    8. Yoon, Byungun & Magee, Christopher L., 2018. "Exploring technology opportunities by visualizing patent information based on generative topographic mapping and link prediction," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 105-117.
    9. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    10. Huang, Mu-Hsuan & Chang, Han-Wen & Chen, Dar-Zen, 2012. "The trend of concentration in scientific research and technological innovation: A reduction of the predominant role of the U.S. in world research & technology," Journal of Informetrics, Elsevier, vol. 6(4), pages 457-468.
    11. Liliana Mitkova & Wang Xuefeng & Pengjun Qui & Donghua Zhu & Ming Lei & Alan L. Porter, 2015. "Identification of technology development trends based on subject–action–object analysis: The case of dye-sensitized solar cells," Post-Print hal-01202391, HAL.
    12. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    13. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    14. Luis Miguel Reyes-Barquet & José Octavio Rico-Contreras & Catherine Azzaro-Pantel & Constantino Gerardo Moras-Sánchez & Magno Angel González-Huerta & Daniel Villanueva-Vásquez & Alberto Alfonso Aguila, 2022. "Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study," Mathematics, MDPI, vol. 10(3), pages 1-42, January.
    15. Lee, Changyong & Kang, Bokyoung & Shin, Juneseuk, 2015. "Novelty-focused patent mapping for technology opportunity analysis," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 355-365.
    16. Ha, Sung Ho & Liu, Weina & Cho, Hune & Kim, Sang Hyun, 2015. "Technological advances in the fuel cell vehicle: Patent portfolio management," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 277-289.
    17. Li, Yanfei & Kimura, Shigeru, 2021. "Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios," Energy Policy, Elsevier, vol. 148(PB).
    18. Jiwon Yu & Jong-Gyu Hwang & Jumi Hwang & Sung Chan Jun & Sumin Kang & Chulung Lee & Hyundong Kim, 2020. "Identification of Vacant and Emerging Technologies in Smart Mobility Through the GTM-Based Patent Map Development," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Jae Lee & Young Jae Han & Sang-Soo Kim & Chulung Lee, 2022. "Patent Data Analytics for Technology Forecasting of the Railway Main Transformer," Sustainability, MDPI, vol. 15(1), pages 1-25, December.
    2. Liu, Zhenfeng & Feng, Jian & Uden, Lorna, 2023. "Technology opportunity analysis using hierarchical semantic networks and dual link prediction," Technovation, Elsevier, vol. 128(C).
    3. Xuan Shi & Lingfei Cai & Hongfang Song, 2019. "Discovering Potential Technology Opportunities for Fuel Cell Vehicle Firms: A Multi-Level Patent Portfolio-Based Approach," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    4. Jiwon Yu & Jong-Gyu Hwang & Jumi Hwang & Sung Chan Jun & Sumin Kang & Chulung Lee & Hyundong Kim, 2020. "Identification of Vacant and Emerging Technologies in Smart Mobility Through the GTM-Based Patent Map Development," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    5. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Seunghyun Oh & Jaewoong Choi & Namuk Ko & Janghyeok Yoon, 2020. "Predicting product development directions for new product planning using patent classification-based link prediction," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 1833-1876, December.
    7. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
    8. Song, Kisik & Yun, Siyeong & Kim, Leehee & Lee, Sungjoo, 2022. "Investigating new design concepts based on customer value and patent data: The case of a future mobility door," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    9. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    10. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    11. Lee, Changyong & Jeon, Daeseong & Ahn, Joon Mo & Kwon, Ohjin, 2020. "Navigating a product landscape for technology opportunity analysis: A word2vec approach using an integrated patent-product database," Technovation, Elsevier, vol. 96.
    12. Jinzhu Zhang & Wenqian Yu, 2020. "Early detection of technology opportunity based on analogy design and phrase semantic representation," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 551-576, October.
    13. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    14. Park, Mingyu & Geum, Youngjung, 2022. "Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Ki Hong Kim & Young Jae Han & Sugil Lee & Sung Won Cho & Chulung Lee, 2019. "Text Mining for Patent Analysis to Forecast Emerging Technologies in Wireless Power Transfer," Sustainability, MDPI, vol. 11(22), pages 1-24, November.
    16. Lee, Ju-Sung & Cherif, Ali & Yoon, Ha-Jun & Seo, Seung-Kwon & Bae, Ju-Eon & Shin, Ho-Jin & Lee, Chulgu & Kwon, Hweeung & Lee, Chul-Jin, 2022. "Large-scale overseas transportation of hydrogen: Comparative techno-economic and environmental investigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    17. Motohashi, Kazuyuki & Zhu, Chen, 2023. "Identifying technology opportunity using dual-attention model and technology-market concordance matrix," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    18. Fanyue Qian & Weijun Gao & Dan Yu & Yongwen Yang & Yingjun Ruan, 2022. "An Analysis of the Potential of Hydrogen Energy Technology on Demand Side Based on a Carbon Tax: A Case Study in Japan," Energies, MDPI, vol. 16(1), pages 1-23, December.
    19. Vipulesh Shardeo & Bishal Dey Sarkar, 2024. "Adoption of hydrogen‐fueled freight transportation: A strategy toward sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 223-240, February.
    20. Sgarbossa, Fabio & Arena, Simone & Tang, Ou & Peron, Mirco, 2023. "Renewable hydrogen supply chains: A planning matrix and an agenda for future research," International Journal of Production Economics, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:21:p:14210-:d:959117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.