IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i18p11479-d913947.html
   My bibliography  Save this article

A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution

Author

Listed:
  • Qiuju Wu

    (Institute of Land & Resources and Sustainable Development, Yunnan University of Finance and Economics, Kunming 650221, China)

  • Renyi Yang

    (School of Economics, Yunnan University of Finance and Economics, Kunming 650221, China)

  • Zisheng Yang

    (Institute of Land & Resources and Sustainable Development, Yunnan University of Finance and Economics, Kunming 650221, China)

Abstract

(1) Background: Dianchi Lake is the largest freshwater plateau lake in southwest China. Since the 1970s, with the large-scale lake reclamation and rapid urbanization, the land use/cover of the Dianchi Basin has changed dramatically, directly hindering the sustainable development of the watershed. It is urgent to study the rationality of land use change in order to promote the “win-win” of eco-environment protection and sustainable economic and social development in Dianchi Basin. (2) Methods: The rationality judgment criteria of land use change in Dianchi Basin was constructed from ecological values, land suitability, laws and regulations, and the rationality of land use change in the Dianchi Basin from 1980 to 2020 was evaluated. (3) Results: The rational degree of land use change in the Dianchi Basin was 71.76%, and the level of rationality was low rationality. The rational degree of change in cultivated land, woodland, grassland, water area and construction land was 74.41%, 69.11%, 77.11%, 3.07% and 98.26%, respectively. Among the irrational land changes, 86.59% of the land had changed to construction land. (4) Conclusions: The main problems of irrational land change in the Dianchi Basin are the massive reduction in high-quality cultivated land, the degradation of woodland, and the unordered expansion of construction land. In order to achieve sustainable development, it is important to protect cultivated land, woodland, grassland and lakes.

Suggested Citation

  • Qiuju Wu & Renyi Yang & Zisheng Yang, 2022. "A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11479-:d:913947
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/18/11479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/18/11479/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hangnan Yu & Lan Li, 2022. "Inferring Land Conditions in the Tumen River Basin by Trend Analysis Based on Satellite Imagery and Geoinformation," Sustainability, MDPI, vol. 14(9), pages 1-11, May.
    2. Ruibo Wang & Xiaojun Xu & Yang Bai & Juha M. Alatalo & Zongbao Yang & Wei Yang & Zhangqian Yang, 2021. "Impacts of Urban Land Use Changes on Ecosystem Services in Dianchi Lake Basin, China," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    3. Veldkamp, A. & Fresco, L.O., 1997. "Reconstructing land use drivers and their spatial scale dependence for Costa Rica (1973 and 1984)," Agricultural Systems, Elsevier, vol. 55(1), pages 19-43, September.
    4. Xuefeng Bai & Bin Wang & Ying Qi, 2021. "The Effect of Returning Farmland to Grassland and Coniferous Forest on Watershed Runoff—A Case Study of the Naoli River Basin in Heilongjiang Province, China," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    5. Ji He & Yu-Rong Wan & Hai-Tao Chen & Song-Lin Wang, 2022. "Effects of Land Use Change on Rainfall Erosion in Luojiang River Basin, China," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    6. Hongwei Guo & Ji Han & Lili Qian & Xinxin Long & Xiaoyin Sun, 2022. "Assessing the Potential Impacts of Urban Expansion on Hydrological Ecosystem Services in a Rapidly Urbanizing Lake Basin in China," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    7. Bahman Amiri & Kaneyuki Nakane, 2009. "Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 931-956, March.
    8. Zahra Emlaei & Sharareh Pourebrahim & Hamidreza Heidari & Khai Ern Lee, 2022. "The Impact of Climate Change as Well as Land-Use and Land-Cover Changes on Water Yield Services in Haraz Basin," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Renyi Yang & Zisheng Yang, 2022. "Can the Sorghum Planting Industry in Less-Favoured Areas Promote the Income Increase of Farmers? An Empirical Study of Survey Data from 901 Samples in Luquan County," Agriculture, MDPI, vol. 12(12), pages 1-26, December.
    2. Renyi Yang & Qiuju Wu & Zisheng Yang & Shiqin Yang, 2022. "Study on Spatio-Temporal Changes of Land Use Sustainability in Southwestern Border Mountainous Provinces in Recent 20 Years Based on Remote Sensing Interpretation: A Case Study in Yunnan Province, Chi," Land, MDPI, vol. 11(11), pages 1-29, November.
    3. Renyi Yang & Changbiao Zhong, 2022. "Land Suitability Evaluation of Sorghum Planting in Luquan County of Jinsha River Dry and Hot Valley Based on the Perspective of Sustainable Development of Characteristic Poverty Alleviation Industry," Agriculture, MDPI, vol. 12(11), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    2. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    3. Anna Porębska & Krzysztof Muszyński & Izabela Godyń & Kinga Racoń-Leja, 2023. "City and Water Risk: Accumulated Runoff Mapping Analysis as a Tool for Sustainable Land Use Planning," Land, MDPI, vol. 12(7), pages 1-21, July.
    4. Neumann, Kathleen & Stehfest, Elke & Verburg, Peter H. & Siebert, Stefan & Müller, Christoph & Veldkamp, Tom, 2011. "Exploring global irrigation patterns: A multilevel modelling approach," Agricultural Systems, Elsevier, vol. 104(9), pages 703-713.
    5. Zhigao Wu & Kangning Xiong & Dayun Zhu & Jie Xiao, 2022. "Revelation of Coupled Ecosystem Quality and Landscape Patterns for Agroforestry Ecosystem Services Sustainability Improvement in the Karst Desertification Control," Agriculture, MDPI, vol. 13(1), pages 1-27, December.
    6. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    7. Frederick Asare & Lobina G. Palamuleni & Tabukeli Ruhiiga, 2018. "Land Use Change Assessment and Water Quality of Ephemeral Ponds for Irrigation in the North West Province, South Africa," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    8. Xinlan Liang & Lei Zhang & Shuqin He & Ke Song & Zicheng Zheng, 2023. "Characteristics and Projection of Rainfall Erosivity Distribution in the Hengduan Mountains," Land, MDPI, vol. 12(7), pages 1-21, July.
    9. Daiva Juknelienė & Vaiva Kazanavičiūtė & Jolanta Valčiukienė & Virginija Atkocevičienė & Gintautas Mozgeris, 2021. "Spatiotemporal Patterns of Land-Use Changes in Lithuania," Land, MDPI, vol. 10(6), pages 1-24, June.
    10. QingHai Guo & KeMing Ma & Liu Yang & Kate He, 2010. "Testing a Dynamic Complex Hypothesis in the Analysis of Land Use Impact on Lake Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1313-1332, May.
    11. Bahman Jabbarian Amiri & Nicola Fohrer & Johannes Cullmann & George Hörmann & Felix Müller & Jan Adamowski, 2016. "Regionalization of Tank Model Using Landscape Metrics of Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5065-5085, November.
    12. Andrew Rule & Sarah-Eve Dill & Gordy Sun & Aidan Chen & Senan Khawaja & Ingrid Li & Vincent Zhang & Scott Rozelle, 2022. "Challenges and Opportunities in Aligning Conservation with Development in China’s National Parks: A Narrative Literature Review," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    13. Zhonghe Zhao & Kun Liu & Bowei Yu & Gaohuan Liu & Youxiao Wang & Chunsheng Wu, 2023. "Modeling of Agricultural Nonpoint-Source Pollution Quantitative Assessment: A Case Study in the Mun River Basin, Thailand," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    14. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    15. Li-Chi Chiang & Yi-Ting Chuang & Chin-Chuan Han, 2019. "Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    16. Bahman Jabbarian Amiri & Gao Junfeng & Nicola Fohrer & Felix Mueller & Jan Adamowski, 2018. "Regionalizing Flood Magnitudes using Landscape Structural Patterns of Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2385-2403, May.
    17. Ruben, Ruerd & Moll, Henk & Kuyvenhoven, Arie, 1998. "Integrating agricultural research and policy analysis: analytical framework and policy applications for bio-economic modelling," Agricultural Systems, Elsevier, vol. 58(3), pages 331-349, November.
    18. Guangchao Li & Wei Chen & Xuepeng Zhang & Zhen Yang & Pengshuai Bi & Zhe Wang, 2022. "Ecosystem Service Values in the Dongting Lake Eco-Economic Zone and the Synergistic Impact of Its Driving Factors," IJERPH, MDPI, vol. 19(5), pages 1-17, March.
    19. Ayman Awadallah & Mohsen Yousry, 2012. "Identifying Homogeneous Water Quality Regions in the Nile River Using Multivariate Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2039-2055, May.
    20. Yutian Liang & Jiaqi Zeng & Shangqian Li, 2022. "Examining the Spatial Variations of Land Use Change and Its Impact Factors in a Coastal Area in Vietnam," Land, MDPI, vol. 11(10), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:18:p:11479-:d:913947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.