IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10325-d1183256.html
   My bibliography  Save this article

Modeling of Agricultural Nonpoint-Source Pollution Quantitative Assessment: A Case Study in the Mun River Basin, Thailand

Author

Listed:
  • Zhonghe Zhao

    (Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Kun Liu

    (College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, China)

  • Bowei Yu

    (Institute of Environment and Sustainable Development, Agricuture of Chinese Academy of Agricultural Sciences, Beijing 100081, China)

  • Gaohuan Liu

    (Jiangsu Center for Collaborative Innovation, Geographical Information Resource Development and Application, Nanjing 210023, China
    Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Youxiao Wang

    (School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China)

  • Chunsheng Wu

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

Agricultural nonpoint-source pollution (ANPSP) is a key cause of global environmental problems. However, the estimation of ANPSP, based on agricultural land use type, crop management, and attenuation of pollutants with distance, is lacking. Using the Mun River Basin as an example, this study established quantitative response relationships between subbasin flows and hydrological and water quality parameters. A good matching of the monitored sections and the control area based on flow relationships was achieved. By determining flow paths and flow distances, the overland and in-river transport attenuations of ANPSP were clarified. The overland and in-river transport and attenuation parameters were also quantified. The land use distribution and structure were further refined through crop management, which included crop types and crop rotation (monocropping or double cropping). Based on the above procedures, quantitative relationships among land use pattern, crop management, attenuation of pollutants with distance, and river water quality were established and used to construct six kinds of regression models. Among these models, the best modeling results were obtained when the parameters of water quality, land use structure, crop management, and soil nutrient attenuation were included. The modeling accuracy in the dry season increased from 0.398 to 0.881 when information about attenuation with distance and crop management was included. Similarly, the modeling accuracy in the wet season increased from 0.365 to 0.727. This study’s findings indicate that the constructed water quality model is effective and has significance for the quantitative determination of ANPSP.

Suggested Citation

  • Zhonghe Zhao & Kun Liu & Bowei Yu & Gaohuan Liu & Youxiao Wang & Chunsheng Wu, 2023. "Modeling of Agricultural Nonpoint-Source Pollution Quantitative Assessment: A Case Study in the Mun River Basin, Thailand," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10325-:d:1183256
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10325/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10325/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li, 2018. "Studies on the Spatiotemporal Variability of River Water Quality and Its Relationships with Soil and Precipitation: A Case Study of the Mun River Basin in Thailand," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    2. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li & Chunsheng Wu, 2018. "Distribution Characteristics and Seasonal Variation of Soil Nutrients in the Mun River Basin, Thailand," IJERPH, MDPI, vol. 15(9), pages 1-18, August.
    3. Bahman Amiri & Kaneyuki Nakane, 2009. "Modeling the Linkage Between River Water Quality and Landscape Metrics in the Chugoku District of Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 931-956, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Qu & Guilin Han & Man Liu & Xiaoqiang Li, 2019. "The Mercury Behavior and Contamination in Soil Profiles in Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(21), pages 1-16, October.
    2. Haoyu Tian & Guo-An Yu & Ling Tong & Renzhi Li & He Qing Huang & Arika Bridhikitti & Thayukorn Prabamroong, 2019. "Water Quality of the Mun River in Thailand—Spatiotemporal Variations and Potential Causes," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    3. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    4. Arika Bridhikitti & Thayukorn Prabamroong & Guohuan Liu & Guo-An Yu, 2021. "Best management practices for mitigating agricultural nutrient pollution in the Mun River Basin, Thailand," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 121-128.
    5. Xiaoqiang Li & Guilin Han & Man Liu & Kunhua Yang & Jinke Liu, 2019. "Hydro-Geochemistry of the River Water in the Jiulongjiang River Basin, Southeast China: Implications of Anthropogenic Inputs and Chemical Weathering," IJERPH, MDPI, vol. 16(3), pages 1-16, February.
    6. Azam Haidary & Bahman Amiri & Jan Adamowski & Nicola Fohrer & Kaneyuki Nakane, 2013. "Assessing the Impacts of Four Land Use Types on the Water Quality of Wetlands in Japan," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2217-2229, May.
    7. Zhigao Wu & Kangning Xiong & Dayun Zhu & Jie Xiao, 2022. "Revelation of Coupled Ecosystem Quality and Landscape Patterns for Agroforestry Ecosystem Services Sustainability Improvement in the Karst Desertification Control," Agriculture, MDPI, vol. 13(1), pages 1-27, December.
    8. Iman Fatehi & Bahman Amiri & Afshin Alizadeh & Jan Adamowski, 2015. "Modeling the Relationship between Catchment Attributes and In-stream Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5055-5072, November.
    9. Frederick Asare & Lobina G. Palamuleni & Tabukeli Ruhiiga, 2018. "Land Use Change Assessment and Water Quality of Ephemeral Ponds for Irrigation in the North West Province, South Africa," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    10. QingHai Guo & KeMing Ma & Liu Yang & Kate He, 2010. "Testing a Dynamic Complex Hypothesis in the Analysis of Land Use Impact on Lake Water Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1313-1332, May.
    11. Bahman Jabbarian Amiri & Nicola Fohrer & Johannes Cullmann & George Hörmann & Felix Müller & Jan Adamowski, 2016. "Regionalization of Tank Model Using Landscape Metrics of Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5065-5085, November.
    12. Mehdi Aalipour & Naicheng Wu & Nicola Fohrer & Yusef Kianpoor Kalkhajeh & Bahman Jabbarian Amiri, 2023. "Examining the Influence of Landscape Patch Shapes on River Water Quality," Land, MDPI, vol. 12(5), pages 1-15, May.
    13. Li-Chi Chiang & Yi-Ting Chuang & Chin-Chuan Han, 2019. "Integrating Landscape Metrics and Hydrologic Modeling to Assess the Impact of Natural Disturbances on Ecohydrological Processes in the Chenyulan Watershed, Taiwan," IJERPH, MDPI, vol. 16(2), pages 1-21, January.
    14. Bahman Jabbarian Amiri & Gao Junfeng & Nicola Fohrer & Felix Mueller & Jan Adamowski, 2018. "Regionalizing Flood Magnitudes using Landscape Structural Patterns of Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2385-2403, May.
    15. Ayman Awadallah & Mohsen Yousry, 2012. "Identifying Homogeneous Water Quality Regions in the Nile River Using Multivariate Statistical Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 2039-2055, May.
    16. Chen Lin & Ronghua Ma & Zhihu Su & Qing Zhu, 2015. "Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    17. Qiuju Wu & Renyi Yang & Zisheng Yang, 2022. "A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    18. Mirzaei, Mohsen & Jafari, Ali & Gholamalifard, Mehdi & Azadi, Hossein & Shooshtari, Sharif Joorabian & Moghaddam, Saghi Movahhed & Gebrehiwot, Kindeya & Witlox, Frank, 2020. "Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover," Land Use Policy, Elsevier, vol. 95(C).
    19. Chen Lin & Ronghua Ma & Bin He, 2015. "Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)," IJERPH, MDPI, vol. 13(1), pages 1-14, December.
    20. Xiaoqiang Li & Guilin Han & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Jinke Liu, 2019. "Hydrochemistry and Dissolved Inorganic Carbon (DIC) Cycling in a Tropical Agricultural River, Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10325-:d:1183256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.