IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10740-d900546.html
   My bibliography  Save this article

A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment to China

Author

Listed:
  • Jing Teng

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Longkai Li

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Yajun Jiang

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China)

  • Ruifeng Shi

    (School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    China Institute of Energy and Transportation Integrated Development, North China Electric Power University, Beijing 102206, China)

Abstract

According to the International Energy Agency (IEA), China’s rail system will become fully electrified by 2050. However, in some remote areas with a weak power grid connection, the promise of an electrified railway will be hard to achieve. By replacing conventional fuels with clean and environmentally-friendly energy, overall carbon emissions would be significantly reduced, contributing to the fulfillment of the carbon-neutral commitment. This study reviews clean energy exploitation in the railway transportation system and the distribution of renewable energy sources along the railway lines of China. The evaluation results show that China has huge energy potential. In terms of photovoltaics alone, the annual power generation of China’s high-speed railway is about 170 TWh, meaning that the energy self-consistency rate for high-speed railway can reach 284.84%. Efficient exploitation of clean energy sources for China’s railway transportation system would effectively mitigate anxieties surrounding energy shortages.

Suggested Citation

  • Jing Teng & Longkai Li & Yajun Jiang & Ruifeng Shi, 2022. "A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment to China," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10740-:d:900546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10740/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10740/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mentis, Dimitrios & Hermann, Sebastian & Howells, Mark & Welsch, Manuel & Siyal, Shahid Hussain, 2015. "Assessing the technical wind energy potential in Africa a GIS-based approach," Renewable Energy, Elsevier, vol. 83(C), pages 110-125.
    2. Shravanth Vasisht, M. & Vashista, G.A. & Srinivasan, J. & Ramasesha, Sheela K., 2017. "Rail coaches with rooftop solar photovoltaic systems: A feasibility study," Energy, Elsevier, vol. 118(C), pages 684-691.
    3. Li Ji & Zhenwei Yu & Jing Ma & Limin Jia & Fuwei Ning, 2020. "The Potential of Photovoltaics to Power the Railway System in China," Energies, MDPI, vol. 13(15), pages 1-17, July.
    4. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
    5. Sharma, Raj Hari & Awal, Ripendra, 2013. "Hydropower development in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 684-693.
    6. Sun, Shengpeng & Liu, Fengliang & Xue, Song & Zeng, Ming & Zeng, Fanxiao, 2015. "Review on wind power development in China: Current situation and improvement strategies to realize future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 589-599.
    7. Ning, Fuwei & Ji, Li & Ma, Jing & Jia, Limin & Yu, Zhenwei, 2021. "Research and analysis of a flexible integrated development model of railway system and photovoltaic in China," Renewable Energy, Elsevier, vol. 175(C), pages 853-867.
    8. Chang, XiaoLin & Liu, Xinghong & Zhou, Wei, 2010. "Hydropower in China at present and its further development," Energy, Elsevier, vol. 35(11), pages 4400-4406.
    9. Olexandr Shavolkin & Iryna Shvedchykova & Juraj Gerlici & Kateryna Kravchenko & František Pribilinec, 2022. "Use of Hybrid Photovoltaic Systems with a Storage Battery for the Remote Objects of Railway Transport Infrastructure," Energies, MDPI, vol. 15(13), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahsan, Nabeel & Hewage, Kasun & Razi, Faran & Hussain, Syed Asad & Sadiq, Rehan, 2023. "A critical review of sustainable rail technologies based on environmental, economic, social, and technical perspectives to achieve net zero emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Ying Wang & Ya Guo & Xiaoqiang Chen & Yunpeng Zhang & Dong Jin & Jing Xie, 2023. "Research on the Energy Management Strategy of a Hybrid Energy Storage Type Railway Power Conditioner System," Energies, MDPI, vol. 16(15), pages 1-16, August.
    3. Xian Huang & Wentong Ji & Xiaorong Ye & Zhangjie Feng, 2023. "Configuration Planning of Expressway Self-Consistent Energy System Based on Multi-Objective Chance-Constrained Programming," Sustainability, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    2. Ruifeng Shi & Yuqin Gao & Jin Ning & Keyi Tang & Limin Jia, 2023. "Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    3. Kim, Hanjin & Ku, Jiyoon & Kim, Sung-Min & Park, Hyeong-Dong, 2022. "A new GIS-based algorithm to estimate photovoltaic potential of solar train: Case study in Gyeongbu line, Korea," Renewable Energy, Elsevier, vol. 190(C), pages 713-729.
    4. Koirala, Dhiroj Prasad & Acharya, Bikram, 2022. "Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal," Energy Policy, Elsevier, vol. 162(C).
    5. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    6. Kumar, Gokula Manikandan Senthil & Cao, Sunliang, 2023. "Leveraging energy flexibilities for enhancing the cost-effectiveness and grid-responsiveness of net-zero-energy metro railway and station systems," Applied Energy, Elsevier, vol. 333(C).
    7. Arenas-López, J. Pablo & Badaoui, Mohamed, 2020. "The Ornstein-Uhlenbeck process for estimating wind power under a memoryless transformation," Energy, Elsevier, vol. 213(C).
    8. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.
    9. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    10. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    11. Kumar, Deepak & Katoch, S.S., 2015. "Sustainability suspense of small hydropower projects: A study from western Himalayan region of India," Renewable Energy, Elsevier, vol. 76(C), pages 220-233.
    12. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    13. Kumar, Deepak & Katoch, S.S., 2014. "Harnessing ‘water tower’ into ‘power tower’: A small hydropower development study from an Indian prefecture in western Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 87-101.
    14. Shuai Li & Lubing Xie & Xiaoming Rui, 2018. "Development and Analysis of the Wind Power Industry in Xinjiang, China," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(2), pages 51-60, June.
    15. Liang, Yushi & Wu, Chunbing & Ji, Xiaodong & Zhang, Mulan & Li, Yiran & He, Jianjun & Qin, Zhiheng, 2022. "Estimation of the influences of spatiotemporal variations in air density on wind energy assessment in China based on deep neural network," Energy, Elsevier, vol. 239(PC).
    16. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    17. Mariko Almeida Carneiro & Diogo Da Fonseca-Soares & Lucian Hendyo Max Pereira & Angel Firmín Ramos-Ridao, 2022. "An Approach for Water and Energy Savings in Public Buildings: A Case Study of Brazilian Rail Company," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    18. Pan, Yu & Liu, Fengwei & Jiang, Ruijin & Tu, Zhiwen & Zuo, Lei, 2019. "Modeling and onboard test of an electromagnetic energy harvester for railway cars," Applied Energy, Elsevier, vol. 250(C), pages 568-581.
    19. Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
    20. Shibo Guo & Dejun Zhu & Yongcan Chen, 2023. "Modelling and Analyzing a Unique Phenomenon of Surface Water Temperature Rise in a Tropical, Large, Riverine Reservoir," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1711-1727, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10740-:d:900546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.