IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5952-d815208.html
   My bibliography  Save this article

Designing Better Public Transport: Understanding Mode Choice Preferences Following the COVID-19 Pandemic

Author

Listed:
  • Arun Ulahannan

    (National Transport Design Centre (NTDC), Coventry University, Coventry CV1 2TT, UK)

  • Stewart Birrell

    (National Transport Design Centre (NTDC), Coventry University, Coventry CV1 2TT, UK)

Abstract

Transport behaviour has evidently changed following the COVID-19 pandemic, with lower usage across multiple modes of public transport and an increasing use of private vehicles. This is problematic as private vehicle use has been linked to an increase in traffic-related air pollutants, and consequently global warming and health-related issues. Hence, it is important to capture transport mode choice preferences following the pandemic, so that potential service changes can be made to address the lower usage. In total, 1138 respondents took part in an online discrete choice experiment methodology to quantify the utility of public transport service attributes in decision making around the choice of public transport. The data resulted in the development of three models using a multinomial logit model in R. For respondents on personal or commuting journeys, the mode of transport had no effect on utility. Results found that fare cost was the most important factor driving transport mode preference, when a range of choices were available. Following this, keeping fare cost consistent, faster journey times were preferred to stronger access to transport (i.e., through the provision of more bus stops/stations). The provision of operational relevant information to the journey was only significantly valued by commuters and travellers who could claim their journey as a business expense. Finally, when cost became less relevant (i.e., for travellers on expensed journeys), there was a significantly strong preference for taxi and road vehicle transport over all other transport modes. The results from this empirical research are discussed and the implications of recent transport policy are discussed, and recommendations of public transport service design are made.

Suggested Citation

  • Arun Ulahannan & Stewart Birrell, 2022. "Designing Better Public Transport: Understanding Mode Choice Preferences Following the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5952-:d:815208
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5952/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5952/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vickerman, Roger, 2018. "Can high-speed rail have a transformative effect on the economy?," Transport Policy, Elsevier, vol. 62(C), pages 31-37.
    2. Konstantinos Gkiotsalitis & Oded Cats, 2021. "Public transport planning adaption under the COVID-19 pandemic crisis: literature review of research needs and directions," Transport Reviews, Taylor & Francis Journals, vol. 41(3), pages 374-392, May.
    3. dell'Olio, Luigi & Ibeas, Angel & Cecin, Patricia, 2011. "The quality of service desired by public transport users," Transport Policy, Elsevier, vol. 18(1), pages 217-227, January.
    4. Soza-Parra, Jaime & Raveau, Sebastián & Muñoz, Juan Carlos & Cats, Oded, 2019. "The underlying effect of public transport reliability on users’ satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 83-93.
    5. Beck, Matthew J. & Hensher, David A., 2020. "Insights into the impact of COVID-19 on household travel and activities in Australia – The early days of easing restrictions," Transport Policy, Elsevier, vol. 99(C), pages 95-119.
    6. Richard Carson & Theodore Groves, 2007. "Incentive and informational properties of preference questions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 181-210, May.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    8. Jian Chen & Shoujie Li, 2017. "Mode Choice Model for Public Transport with Categorized Latent Variables," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-11, August.
    9. Paulley, Neil & Balcombe, Richard & Mackett, Roger & Titheridge, Helena & Preston, John & Wardman, Mark & Shires, Jeremy & White, Peter, 2006. "The demand for public transport: The effects of fares, quality of service, income and car ownership," Transport Policy, Elsevier, vol. 13(4), pages 295-306, July.
    10. Zhang, Jing & Reed Johnson, F. & Mohamed, Ateesha F. & Hauber, A. Brett, 2015. "Too many attributes: A test of the validity of combining discrete-choice and best–worst scaling data," Journal of choice modelling, Elsevier, vol. 15(C), pages 1-13.
    11. Merkert, Rico & Beck, Matthew, 2017. "Value of travel time savings and willingness to pay for regional aviation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 29-42.
    12. Mickael Bech & Trine Kjaer & Jørgen Lauridsen, 2011. "Does the number of choice sets matter? Results from a web survey applying a discrete choice experiment," Health Economics, John Wiley & Sons, Ltd., vol. 20(3), pages 273-286, March.
    13. Alina Averchenkova & Sam Fankhauser & Jared J. Finnegan, 2021. "The impact of strategic climate legislation: evidence from expert interviews on the UK Climate Change Act," Climate Policy, Taylor & Francis Journals, vol. 21(2), pages 251-263, February.
    14. Tyrinopoulos, Yannis & Antoniou, Constantinos, 2008. "Public transit user satisfaction: Variability and policy implications," Transport Policy, Elsevier, vol. 15(4), pages 260-272, July.
    15. de Oña, Juan & de Oña, Rocío & Eboli, Laura & Mazzulla, Gabriella, 2013. "Perceived service quality in bus transit service: A structural equation approach," Transport Policy, Elsevier, vol. 29(C), pages 219-226.
    16. Echaniz, Eneko & dell’Olio, Luigi & Ibeas, Ángel, 2018. "Modelling perceived quality for urban public transport systems using weighted variables and random parameters," Transport Policy, Elsevier, vol. 67(C), pages 31-39.
    17. F Alpizar & F Carlsson & P Martinsson, 2003. "Using Choice Experiments for Non-Market Valuation," Economic Issues Journal Articles, Economic Issues, vol. 8(1), pages 83-110, March.
    18. Drummond, Michael F. & Sculpher, Mark J. & Claxton, Karl & Stoddart, Greg L. & Torrance, George W., 2015. "Methods for the Economic Evaluation of Health Care Programmes," OUP Catalogue, Oxford University Press, edition 4, number 9780199665884.
    19. Emily Lancsar & Denzil G. Fiebig & Arne Risa Hole, 2017. "Discrete Choice Experiments: A Guide to Model Specification, Estimation and Software," PharmacoEconomics, Springer, vol. 35(7), pages 697-716, July.
    20. Abrantes, Pedro A.L. & Wardman, Mark R., 2011. "Meta-analysis of UK values of travel time: An update," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 1-17, January.
    21. Poudenx, Pascal, 2008. "The effect of transportation policies on energy consumption and greenhouse gas emission from urban passenger transportation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 901-909, July.
    22. Vickerman, Roger, 2021. "Will Covid-19 put the public back in public transport? A UK perspective," Transport Policy, Elsevier, vol. 103(C), pages 95-102.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carolina Silva Costa & Cira Souza Pitombo & Felipe Lobo Umbelino de Souza, 2022. "Travel Behavior before and during the COVID-19 Pandemic in Brazil: Mobility Changes and Transport Policies for a Sustainable Transportation System in the Post-Pandemic Period," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    2. Echaniz, Eneko & Ho, Chinh Q. & Rodriguez, Andres & dell'Olio, Luigi, 2019. "Comparing best-worst and ordered logit approaches for user satisfaction in transit services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 752-769.
    3. Aydin, Nezir & Celik, Erkan & Gumus, Alev Taskin, 2015. "A hierarchical customer satisfaction framework for evaluating rail transit systems of Istanbul," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 61-81.
    4. Laura Eboli & Gabriella Mazzulla, 2014. "Investigating the heterogeneity of bus users' preferences through discrete choice modelling," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(8), pages 695-710, December.
    5. Rong, Rui & Liu, Lishan & Jia, Ning & Ma, Shoufeng, 2022. "Impact analysis of actual traveling performance on bus passenger’s perception and satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 80-100.
    6. Sun, Fan & Jin, Minjie & Zhang, Tao & Huang, Wencheng, 2022. "Satisfaction differences in bus traveling among low-income individuals before and after COVID-19," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 311-332.
    7. Eldeeb, Gamal & Mohamed, Moataz, 2020. "Quantifying preference heterogeneity in transit service desired quality using a latent class choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 119-133.
    8. Eneko Echaniz & Chinh Ho & Andres Rodriguez & Luigi dell’Olio, 2020. "Modelling user satisfaction in public transport systems considering missing information," Transportation, Springer, vol. 47(6), pages 2903-2921, December.
    9. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2019. "The relationship between norms, satisfaction and public transport use: A comparison across six European cities using structural equation modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 37-57.
    10. Mulley, Corinne & Ho, Chinh & Ho, Loan & Hensher, David & Rose, John, 2018. "Will bus travellers walk further for a more frequent service? An international study using a stated preference approach," Transport Policy, Elsevier, vol. 69(C), pages 88-97.
    11. Celik, Erkan & Aydin, Nezir & Gumus, Alev Taskin, 2014. "A multiattribute customer satisfaction evaluation approach for rail transit network: A real case study for Istanbul, Turkey," Transport Policy, Elsevier, vol. 36(C), pages 283-293.
    12. Jomnonkwao, Sajjakaj & Ratanavaraha, Vatanavongs, 2016. "Measurement modelling of the perceived service quality of a sightseeing bus service: An application of hierarchical confirmatory factor analysis," Transport Policy, Elsevier, vol. 45(C), pages 240-252.
    13. Wan, Dan & Kamga, Camille & Liu, Jun & Sugiura, Aaron & Beaton, Eric B., 2016. "Rider perception of a “light” Bus Rapid Transit system - The New York City Select Bus Service," Transport Policy, Elsevier, vol. 49(C), pages 41-55.
    14. Efthymiou, Dimitrios & Antoniou, Constantinos, 2017. "Understanding the effects of economic crisis on public transport users’ satisfaction and demand," Transport Policy, Elsevier, vol. 53(C), pages 89-97.
    15. Hernandez, Sara & Monzon, Andres & de Oña, Rocío, 2016. "Urban transport interchanges: A methodology for evaluating perceived quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 31-43.
    16. Ganji, S.S. & Ahangar, A.N. & Awasthi, Anjali & Jamshidi Bandari, Smaneh, 2021. "Psychological analysis of intercity bus passenger satisfaction using Q methodology," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 345-363.
    17. Puteri Paramita & Zuduo Zheng & Md Mazharul Haque & Simon Washington & Paul Hyland, 2018. "User satisfaction with train fares: A comparative analysis in five Australian cities," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-26, June.
    18. Chee, Pei Nen Esther & Susilo, Yusak O. & Wong, Yiik Diew, 2020. "Determinants of intention-to-use first-/last-mile automated bus service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 350-375.
    19. Md Rokibul Islam & Md Hadiuzzaman & Rajib Banik & Md Mehedi Hasnat & Sarder Rafee Musabbir & Sanjana Hossain, 2016. "Bus service quality prediction and attribute ranking: a neural network approach," Public Transport, Springer, vol. 8(2), pages 295-313, September.
    20. Nordmeyer, Eike Florenz & Danne, Michael & Musshoff, Oliver, 2023. "Can satellite-retrieved data increase farmers' willingness to insure against drought? – Insights from Germany," Agricultural Systems, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5952-:d:815208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.