IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5886-d814253.html
   My bibliography  Save this article

Decoupling Analysis of Net Carbon Emissions and Economic Growth of Marine Aquaculture

Author

Listed:
  • Hongjun Guan

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China
    Institute of Marine Economy and Management, Shandong University of Finance and Economics, Jinan 250014, China)

  • Zhenzhen Sun

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China)

  • Jingyi Wang

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China)

Abstract

Decoupling carbon emissions from economic growth is the key for the sustainable development of developing countries. Based on the panel data of marine aquaculture in China from 2010 to 2019, this paper employs the Tapio decoupling index model to analyze the decoupling characteristics of net carbon emissions and the economic growth of marine aquaculture. The logarithmic average weight decomposition method (LMDI model) and Tapio decoupling effort index model are also introduced to explore the contribution of various areas, provinces, and factors to the decoupling of net carbon emissions and the economic growth of marine aquaculture. Empirical results show that: (1) Net carbon emissions have a decoupling trend from the economic growth of marine aquaculture, but there is a large regional difference. (2) Regarding the degree of decoupling efforts, it is much stronger in the eastern and southern ocean economic zones than that in the northern ocean economic zone. (3) In terms of the decoupling contributions of various factors, carbon emission intensity > aquaculture scale > aquaculture efficiency > aquaculture structure, but there is heterogeneity among the different regions. Among the reasons for the inter-regional differences, carbon emission intensity > aquaculture scale > aquaculture structure > aquaculture efficiency. A further redundancy efficiency analysis explains the source of the differences. On this basis, strategies are proposed to improve the efficiency of marine aquaculture, including the construction of a modern three-dimensional aquaculture system, the improvement of the market-oriented mechanism, and the establishment of a modern marine aquaculture economic system.

Suggested Citation

  • Hongjun Guan & Zhenzhen Sun & Jingyi Wang, 2022. "Decoupling Analysis of Net Carbon Emissions and Economic Growth of Marine Aquaculture," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5886-:d:814253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingwen Zhang & Yin Dai & Chi-Wei Su & Dervis Kirikkaleli & Muhammad Umar, 2021. "Intertemporal change in the effect of economic growth on carbon emission in China," Energy & Environment, , vol. 32(7), pages 1207-1225, November.
    2. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    3. Driscoll, John & Tyedmers, Peter, 2010. "Fuel use and greenhouse gas emission implications of fisheries management: the case of the new england atlantic herring fishery," Marine Policy, Elsevier, vol. 34(3), pages 353-359, May.
    4. Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
    5. Edison D. Macusi & Darshel Ester P. Estor & Elaine Q. Borazon & Misael B. Clapano & Mudjekeewis D. Santos, 2022. "Environmental and Socioeconomic Impacts of Shrimp Farming in the Philippines: A Critical Analysis Using PRISMA," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    6. Zhang, Weike & Luo, Qian & Liu, Shiyuan, 2022. "Is government regulation a push for corporate environmental performance? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 105-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    2. Petrick, Sebastian, 2013. "Carbon efficiency, technology, and the role of innovation patterns: Evidence from German plant-level microdata," Kiel Working Papers 1833, Kiel Institute for the World Economy (IfW Kiel).
    3. Mariana Conte Grand, 2018. "Desacople y Descomposición del Consumo Final de Energía en Argentina," CEMA Working Papers: Serie Documentos de Trabajo. 678, Universidad del CEMA.
    4. Weiguo Fan & Mengmeng Meng & Jianchang Lu & Xiaobin Dong & Hejie Wei & Xuechao Wang & Qing Zhang, 2020. "Decoupling Elasticity and Driving Factors of Energy Consumption and Economic Development in the Qinghai-Tibet Plateau," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    5. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    6. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2017. "Decomposing inequality in energy-related CO2 emissions by source and source increment: The roles of production and residential consumption," Energy Policy, Elsevier, vol. 107(C), pages 698-710.
    7. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    8. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    9. Lu Wan & Zi-Long Wang & Jhony Choon Yeong Ng, 2016. "Measurement Research on the Decoupling Effect of Industries’ Carbon Emissions—Based on the Equipment Manufacturing Industry in China," Energies, MDPI, vol. 9(11), pages 1-17, November.
    10. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    11. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
    12. Patiño, Lourdes Isabel & Alcántara, Vicent & Padilla, Emilio, 2021. "Driving forces of CO2 emissions and energy intensity in Colombia," Energy Policy, Elsevier, vol. 151(C).
    13. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
    14. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Decomposition Analysis of Energy-Related Industrial CO 2 Emissions in China," Energies, MDPI, vol. 6(5), pages 1-19, April.
    15. Jie-Fang Dong & Chun Deng & Xing-Min Wang & Xiao-Lei Zhang, 2016. "Multilevel Index Decomposition of Energy-Related Carbon Emissions and Their Decoupling from Economic Growth in Northwest China," Energies, MDPI, vol. 9(9), pages 1-17, August.
    16. Jieting Yin & Chaowei Huang, 2022. "Analysis on Influencing Factors Decomposition and Decoupling Effect of Power Carbon Emissions in Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    17. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    18. Cheng, Shulei & Wang, Ping & Chen, Boyang & Fan, Wei, 2022. "Decoupling and decomposition analysis of CO2 emissions from government spending in China," Energy, Elsevier, vol. 243(C).
    19. Qingquan Jiang & Jinhuang Lin & Qianqian Wei & Rui Zhang & Hongzhen Fu, 2023. "Demystifying the Economic Growth and CO 2 Nexus in Fujian’s Key Industries Based on Decoupling and LMDI Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    20. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5886-:d:814253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.