IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4476-d537798.html
   My bibliography  Save this article

Wetland Biodiversity Disturbance Evaluation Induced by a Water Conservancy Project in the Flooded Plain of the Huolin River Lower Reaches

Author

Listed:
  • Yujuan Zhai

    (College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China)

  • Libo Hao

    (College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China)

  • Yanhong Zhang

    (College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China)

  • Ye Li

    (College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China)

  • Zhaoli Liu

    (Northeast Institute of Geography and Agriculture, Chinese Academy of Science, Changchun 130012, China)

Abstract

The Huolin River is an important water supply source for the wetland located in western Jilin province, especially the river flooding in the lower reaches of the basin. In recent years, the degree of aridity and salinization of the wetlands has increased. To prevent the further deterioration of the ecological system, water conservancy projects and irrigation systems were constructed to ensure water safety. What effects on the ecological system and biological diversity were induced by all the measures and constructions is not clear. The “emergency project” of the water recession of the Huolin River is taken as example. In the analysis, the project is divided into two stages, five indicators for criteria tier were selected, and for index tier, 21 indicators during the implementation stage and 15 indicators during the operation stage were selected for constructing the analytic hierarchy process (AHP) model. By using expert scoring to determine the weight of each indicator, the impact index and degree of water conservancy of projects on biodiversity are calculated. The results show that at the level of the impact categories, ecological landscape is identified as a key influence factor. At the index level, the occupied area of the landscape type, the changes in patch number, the water conservation function, and the water purification quality are identified as corresponding key impact indicators. The biodiversity overall impact index is −23.45, which means the negative impact and the degree is medium to low. Meanwhile, for the implementation stage, the index is −51.58, which indicates a medium to low negative impact, while for the operation stage, the index is 33.66, which indicates a medium to low positive impact. These results are analyzed and scientifically evaluated and corresponding protection suggestions for the local area are proposed.

Suggested Citation

  • Yujuan Zhai & Libo Hao & Yanhong Zhang & Ye Li & Zhaoli Liu, 2021. "Wetland Biodiversity Disturbance Evaluation Induced by a Water Conservancy Project in the Flooded Plain of the Huolin River Lower Reaches," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4476-:d:537798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    2. Felicity Swanepoel & Francois Retief & Alan Bond & Jenny Pope & Angus Morrison-Saunders & Morgan Houptfleisch & Monica Fundingsland, 2019. "Explanations for the Quality of Biodiversity Inputs to Environmental Impact Assessment (EIA) in Areas with High Biodiversity Value," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-30, June.
    3. Huihua Chen & Hujun Li & Yige Wang & Baoquan Cheng, 2020. "A Comprehensive Assessment Approach for Water-Soil Environmental Risk during Railway Construction in Ecological Fragile Region Based on AHP and MEA," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    4. Vargas, Luis G., 1990. "An overview of the analytic hierarchy process and its applications," European Journal of Operational Research, Elsevier, vol. 48(1), pages 2-8, September.
    5. Yao Wu & Lidan Guo & Ziqiang Xia & Peiran Jing & Xunzhou Chunyu, 2019. "Reviewing the Poyang Lake Hydraulic Project Based on Humans’ Changing Cognition of Water Conservancy Projects," Sustainability, MDPI, vol. 11(9), pages 1-21, May.
    6. Lijuan Du & Li Xu & Yanping Li & Changshun Liu & Zhenhua Li & Jefferson S. Wong & Bo Lei, 2019. "China’s Agricultural Irrigation and Water Conservancy Projects: A Policy Synthesis and Discussion of Emerging Issues," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hsiao-Hsien Lin & I.-Yun Chen & Chih-Hung Tseng & Yueh-Shiu Lee & Jao-Chuan Lin, 2022. "A Study of the Impact of River Improvement and Greening on Public Reassurance and the Urban Well-Being Index during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(7), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baoquan Cheng & Jianchang Li & Jingfang Tao & Jianling Huang & Huihua Chen, 2023. "Assessing the Land Reclamation Suitability of Beam Fabrication and Storage Yard in Railway Construction: An AHP-MEA Method," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Maria Iglesias-Mendoza & Akilu Yunusa-Kaltungo & Sara Hadleigh-Dunn & Ashraf Labib, 2021. "Learning How to Learn from Disasters through a Comparative Dichotomy Analysis: Grenfell Tower and Hurricane Katrina Case Studies," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    3. Melachrinoudis, Emanuel & Min, Hokey, 2000. "The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach," European Journal of Operational Research, Elsevier, vol. 123(1), pages 1-15, May.
    4. Hsiao-Hsien Lin & I.-Yun Chen & Chih-Hung Tseng & Yueh-Shiu Lee & Jao-Chuan Lin, 2022. "A Study of the Impact of River Improvement and Greening on Public Reassurance and the Urban Well-Being Index during the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(7), pages 1-28, March.
    5. Lucas, Rochelle Irene & Promentilla, Michael Angelo & Ubando, Aristotle & Tan, Raymond Girard & Aviso, Kathleen & Yu, Krista Danielle, 2017. "An AHP-based evaluation method for teacher training workshop on information and communication technology," Evaluation and Program Planning, Elsevier, vol. 63(C), pages 93-100.
    6. Mohammad Kanan & Ansa Rida Dilshad & Sadaf Zahoor & Amjad Hussain & Muhammad Salman Habib & Amjad Mehmood & Zaher Abusaq & Allam Hamdan & Jihad Asad, 2023. "An Empirical Study of the Implementation of an Integrated Ergo-Green-Lean Framework: A Case Study," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    7. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
    8. Zsuzsanna Katalin Szabo & Zsombor Szádoczki & Sándor Bozóki & Gabriela C. Stănciulescu & Dalma Szabo, 2021. "An Analytic Hierarchy Process Approach for Prioritisation of Strategic Objectives of Sustainable Development," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    9. Asma M. A. Bahurmoz, 2003. "The Analytic Hierarchy Process at Dar Al-Hekma, Saudi Arabia," Interfaces, INFORMS, vol. 33(4), pages 70-78, August.
    10. Shuping Huang & Cecil Konijnendijk van den Bosch & Weicong Fu & Jinda Qi & Ziru Chen & Zhipeng Zhu & Jianwen Dong, 2018. "Does Adding Local Tree Elements into Dwellings Enhance Individuals’ Homesickness? Scenario-Visualisation for Developing Sustainable Rural Landscapes," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    11. Huihua Chen & Hujun Li & Yige Wang & Baoquan Cheng, 2020. "A Comprehensive Assessment Approach for Water-Soil Environmental Risk during Railway Construction in Ecological Fragile Region Based on AHP and MEA," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
    12. Paweł Cabała, 2010. "Using the analytic hierarchy process in evaluating decision alternatives," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(1), pages 5-23.
    13. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    14. Lu, Hsi-Peng & Yu, Huei-Ju & Lu, Simon S. K., 2001. "The effects of cognitive style and model type on DSS acceptance: An empirical study," European Journal of Operational Research, Elsevier, vol. 131(3), pages 649-663, June.
    15. Chwolka, Anne & Raith, Matthias G., 2001. "Group preference aggregation with the AHP - implications for multiple-issue agendas," European Journal of Operational Research, Elsevier, vol. 132(1), pages 176-186, July.
    16. Liu, Hongda & Huang, Feipeng & Huang, Jialiang, 2022. "Measuring the coordination decision of renewable energy as a natural resource contracts based on rights structure and corporate social responsibility from economic recovery," Resources Policy, Elsevier, vol. 78(C).
    17. Alessio Ishizaka & Enrique Mu, 2023. "What is so special about the analytic hierarchy and network process?," Annals of Operations Research, Springer, vol. 326(2), pages 625-634, July.
    18. Goossens, Adriaan J.M. & Basten, Rob J.I., 2015. "Exploring maintenance policy selection using the Analytic Hierarchy Process; An application for naval ships," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 31-41.
    19. Xu, Z., 2000. "On consistency of the weighted geometric mean complex judgement matrix in AHP," European Journal of Operational Research, Elsevier, vol. 126(3), pages 683-687, November.
    20. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4476-:d:537798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.