IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3834-d527301.html
   My bibliography  Save this article

An Enabling Framework to Support the Sustainable Energy Transition at the National Level

Author

Listed:
  • Marina Blohm

    (Department Energy and Environmental Management, Europa-Universität Flensburg, Auf dem Campus 1b, 24943 Flensburg, Germany)

Abstract

The world is fighting against the impacts of the climate crisis. Although the technical feasibility of 100% renewable energy systems was already verified by a variety of research studies, there were still more than 200 GW of unsustainable new coal power capacity under construction at a global level in 2018. To achieve the required carbon neutrality, current energy systems need to be transformed toward sustainable energy. The review of the literature has shown that several barriers for carbon-neutral technologies exist, which currently impede the sustainable transition. This paper focuses on the development of an enabling framework to overcome existing barriers to facilitate sustainable and carbon-neutral technologies at the national level. Additionally, it should support decision makers to consider all underlying criteria of this urgently needed energy transition. The criteria of such an enabling framework can be classified in 11 categories, which are (1) environmental and ecological protection; (2) society, culture, and behavior; (3) equity and justice; (4) knowledge; (5) energy markets; (6) energy policy; (7) legal requirements; (8) finance; (9) institutions; (10) infrastructure; and (11) clash of interests. Even though some criteria differ from country to country, a strong governmental support for the transition is always required to be successful.

Suggested Citation

  • Marina Blohm, 2021. "An Enabling Framework to Support the Sustainable Energy Transition at the National Level," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3834-:d:527301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3834/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3834/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    2. Bakhtiar, Asieh & Aslani, Alireza & Hosseini, Seyed Mohsen, 2020. "Challenges of diffusion and commercialization of bioenergy in developing countries," Renewable Energy, Elsevier, vol. 145(C), pages 1780-1798.
    3. Oei, Pao-Yu & Brauers, Hanna & Herpich, Philipp, 2020. "Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 20(8), pages 963-979.
    4. Solomon, Barry D. & Krishna, Karthik, 2011. "The coming sustainable energy transition: History, strategies, and outlook," Energy Policy, Elsevier, vol. 39(11), pages 7422-7431.
    5. John S. Dryzek & Simon Niemeyer, 2019. "Deliberative democracy and climate governance," Nature Human Behaviour, Nature, vol. 3(5), pages 411-413, May.
    6. Pueyo, Ana, 2013. "Enabling frameworks for low-carbon technology transfer to small emerging economies: Analysis of ten case studies in Chile," Energy Policy, Elsevier, vol. 53(C), pages 370-380.
    7. Painuly, J.P, 2001. "Barriers to renewable energy penetration; a framework for analysis," Renewable Energy, Elsevier, vol. 24(1), pages 73-89.
    8. Ana Pueyo & Mar�a Mendiluce & Mar�a Sanchez Naranjo & Julio Lumbreras, 2012. "How to increase technology transfers to developing countries: a synthesis of the evidence," Climate Policy, Taylor & Francis Journals, vol. 12(3), pages 320-340, May.
    9. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    10. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2016. "Review of barriers to the dissemination of decentralized renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 477-490.
    11. Pao-Yu Oei & Hanna Brauers & Philipp Herpich, 2020. "Lessons from Germany’s hard coal mining phase-out: policies and transition from 1950 to 2018," Climate Policy, Taylor & Francis Journals, vol. 20(8), pages 963-979, September.
    12. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    13. Metcalfe, J S, 1995. "Technology Systems and Technology Policy in an Evolutionary Framework," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 19(1), pages 25-46, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    2. Feng Dong & Chang Qin & Xiaoyun Zhang & Xu Zhao & Yuling Pan & Yujin Gao & Jiao Zhu & Yangfan Li, 2021. "Towards Carbon Neutrality: The Impact of Renewable Energy Development on Carbon Emission Efficiency," IJERPH, MDPI, vol. 18(24), pages 1-23, December.
    3. Ion Pană & Iuliana Veronica Gheţiu & Ioana Gabriela Stan & Florinel Dinu & Gheorghe Brănoiu & Silvian Suditu, 2022. "The Use of Hydraulic Fracturing in Stimulation of the Oil and Gas Wells in Romania," Sustainability, MDPI, vol. 14(9), pages 1-33, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Mengi-Dinçer, H. & Ediger, V.Ş. & Yesevi, Ç.G., 2021. "Evaluating the International Renewable Energy Agency through the lens of social constructivism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    4. Ivan Nygaard & Ulrich Hansen, 2015. "The conceptual and practical challenges to technology categorisation in the preparation of technology needs assessments," Climatic Change, Springer, vol. 131(3), pages 371-385, August.
    5. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    6. Böhringer, Christoph & Rosendahl, Knut Einar, 2022. "Europe beyond coal – An economic and climate impact assessment," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    7. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    8. Sovacool, Benjamin K. & Griffiths, Steve, 2020. "The cultural barriers to a low-carbon future: A review of six mobility and energy transitions across 28 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Peter Redler & Amelie Wuppermann & Joachim Winter & Hannes Schwandt & Janet Currie, 2021. "Geographic Inequality in Income and Mortality in Germany," Fiscal Studies, John Wiley & Sons, vol. 42(1), pages 147-170, March.
    10. Ma, Xuejiao & Ahmad, Najid & Oei, Pao-Yu, 2021. "Environmental Kuznets curve in France and Germany: Role of renewable and nonrenewable energy," Renewable Energy, Elsevier, vol. 172(C), pages 88-99.
    11. Dalia Streimikiene & Tomas Baležentis & Artiom Volkov & Mangirdas Morkūnas & Agnė Žičkienė & Justas Streimikis, 2021. "Barriers and Drivers of Renewable Energy Penetration in Rural Areas," Energies, MDPI, vol. 14(20), pages 1-28, October.
    12. Jarosław Kaczmarek, 2022. "The Balance of Outlays and Effects of Restructuring Hard Coal Mining Companies in Terms of Energy Policy of Poland PEP 2040," Energies, MDPI, vol. 15(5), pages 1-30, March.
    13. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    14. Karatayev, Marat & Hall, Stephen & Kalyuzhnova, Yelena & Clarke, Michèle L., 2016. "Renewable energy technology uptake in Kazakhstan: Policy drivers and barriers in a transitional economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 120-136.
    15. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    16. Yaqoot, Mohammed & Diwan, Parag & Kandpal, Tara C., 2017. "Financial attractiveness of decentralized renewable energy systems – A case of the central Himalayan state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 101(C), pages 973-991.
    17. Aleksander Frejowski & Jan Bondaruk & Adam Duda, 2021. "Challenges and Opportunities for End-of-Life Coal Mine Sites: Black-to-Green Energy Approach," Energies, MDPI, vol. 14(5), pages 1-18, March.
    18. Møller Sneum, Daniel, 2021. "Barriers to flexibility in the district energy-electricity system interface – A taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Hugo Lucas & Ruth Carbajo & Tomoo Machiba & Evgeny Zhukov & Luisa F. Cabeza, 2021. "Improving Public Attitude towards Renewable Energy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    20. Kamila Svobodova & John R. Owen & Deanna Kemp & Vítězslav Moudrý & Éléonore Lèbre & Martin Stringer & Benjamin K. Sovacool, 2022. "Decarbonization, population disruption and resource inventories in the global energy transition," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3834-:d:527301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.