IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2994-d513845.html
   My bibliography  Save this article

Analysis of the Thermal–Technical Properties of Modern Log Structures

Author

Listed:
  • Jozef Švajlenka

    (Department of Construction Technology, Economy and Management, Faculty of Civil Engineering, Technical University of Košice, 042 00 Košice, Slovakia)

  • Mária Kozlovská

    (Department of Construction Technology, Economy and Management, Faculty of Civil Engineering, Technical University of Košice, 042 00 Košice, Slovakia)

Abstract

“Ecological buildings” and “energy-efficient buildings” are concepts which we encounter on a daily basis and which define modern trends. The purpose of their design is to create an optimal thermal microclimate by means of heat flows that form within it or enter it. A balanced combination of heat flows creates suitable conditions for thermal comfort—a factor contributing to the quality of the internal environment of buildings. This research addresses the problem of heat distribution in construction materials based on wood and their thermal–technical properties in relation to the sustainability requirements for the thermal–technical properties of constructions and buildings. The research examines the structural parts of the external walls of modern log constructions. The objective of this work is to analyse the thermal–technical properties of the structural parts of modern log wood constructions in laboratory conditions and verify them against calculated values and values declared by manufacturers. This publication is also a contribution to the current needs in terms of the sustainability and internal environment quality of constructions in general. The publication is also a contribution to the current needs in the field of heating technology in terms of sustainability and the quality of internal environments.

Suggested Citation

  • Jozef Švajlenka & Mária Kozlovská, 2021. "Analysis of the Thermal–Technical Properties of Modern Log Structures," Sustainability, MDPI, vol. 13(5), pages 1-12, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2994-:d:513845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2994/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2994/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dodoo, Ambrose & Gustavsson, Leif, 2013. "Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply," Applied Energy, Elsevier, vol. 112(C), pages 834-842.
    2. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chihiro Kayo & Ryu Noda, 2018. "Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    2. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    3. Dimoudi, A. & Tompa, C., 2008. "Energy and environmental indicators related to construction of office buildings," Resources, Conservation & Recycling, Elsevier, vol. 53(1), pages 86-95.
    4. Kylili, Angeliki & Ilic, Milos & Fokaides, Paris A., 2017. "Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 169-177.
    5. Brainard, Julii & Lovett, Andrew & Bateman, Ian, 2006. "Sensitivity analysis in calculating the social value of carbon sequestered in British grown Sitka spruce," Journal of Forest Economics, Elsevier, vol. 12(3), pages 201-228, December.
    6. L. Gustavsson & R. Madlener & H.-F. Hoen & G. Jungmeier & T. Karjalainen & S. KlÖhn & K. Mahapatra & J. Pohjola & B. Solberg & H. Spelter, 2006. "The Role of Wood Material for Greenhouse Gas Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(5), pages 1097-1127, September.
    7. Haibo Guo & Ying Liu & Yiping Meng & Haoyu Huang & Cheng Sun & Yu Shao, 2017. "A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    8. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    9. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    10. Sathre, Roger & Gustavsson, Leif, 2009. "Using wood products to mitigate climate change: External costs and structural change," Applied Energy, Elsevier, vol. 86(2), pages 251-257, February.
    11. Petrovic, Bojana & Myhren, Jonn Are & Zhang, Xingxing & Wallhagen, Marita & Eriksson, Ola, 2019. "Life cycle assessment of a wooden single-family house in Sweden," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    13. Chi-hsiang Wang & Xiaoming Wang, 2012. "Vulnerability of timber in ground contact to fungal decay under climate change," Climatic Change, Springer, vol. 115(3), pages 777-794, December.
    14. Min-Seop Seo & Taeyeon Kim & Goopyo Hong & Hyungkeun Kim, 2016. "On-Site Measurements of CO 2 Emissions during the Construction Phase of a Building Complex," Energies, MDPI, vol. 9(8), pages 1-13, July.
    15. Nguyen, Truong & Gustavsson, Leif & Dodoo, Ambrose & Tettey, Uniben Yao Ayikoe, 2020. "Implications of supplying district heat to a new urban residential area in Sweden," Energy, Elsevier, vol. 194(C).
    16. Hossein Omrany & Veronica Soebarto & Ehsan Sharifi & Ali Soltani, 2020. "Application of Life Cycle Energy Assessment in Residential Buildings: A Critical Review of Recent Trends," Sustainability, MDPI, vol. 12(1), pages 1-30, January.
    17. Karolina Wojtacha-Rychter & Piotr Kucharski & Adam Smolinski, 2021. "Conventional and Alternative Sources of Thermal Energy in the Production of Cement—An Impact on CO 2 Emission," Energies, MDPI, vol. 14(6), pages 1-15, March.
    18. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.
    19. Navid Hossaini & Bahareh Reza & Sharmin Akhtar & Rehan Sadiq & Kasun Hewage, 2015. "AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 58(7), pages 1217-1241, July.
    20. Reid Miner, 2023. "The 100-Year Method for Forecasting Carbon Sequestration in Forest Products in Use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(1), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2994-:d:513845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.