IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2695-d509222.html
   My bibliography  Save this article

A Hybrid MCDM Approach towards Resilient Sourcing

Author

Listed:
  • Ahmed Mohammed

    (Faculty of Transport & Logistics, Muscat University, Muscat 130, Oman)

  • Morteza Yazdani

    (ESIC Business & Marketing school, 28223 Madrid, Spain)

  • Amar Oukil

    (Department of Operations Management & Business Statistics, Sultan Qaboos University, AlKhod 123, Oman)

  • Ernesto D. R. Santibanez Gonzalez

    (Department of Industrial Engineering, CES 4.0 Initiative, Faculty of Engineering, University of Talca, Los Niches km. 1, Curicó 3340000, Chile)

Abstract

Achieving a supply chain that is resilient to potential unforeseen disruptions (e.g., strikes, floods, tsunamis, etc.) remains one of the vital concerns of decision makers (DMs). To build up a reactive supply chain plan towards resilience, the purchasing department needs to pay the strictest attention to sourcing decisions. This study contributes to the literature through developing an efficient resilient supplier selection approach based on a new holistic framework that enables the identification of key resilience pillars (RPs) and traditional business criteria (TBC) in light of a thorough literature review and experts’ opinions. To this end, the relative importance of TBC/RP was measured by applying the DEMATEL (D) method. This was followed by the application of MABAC-OCRA-TOPSIS-VIKOR (MOTV) methods to verify the suppliers’ ranking. Furthermore, the Spearman rank correlation coefficient (SRCC) approach was used to investigate the correlation among the suppliers’ ranking, revealed via the four methods. In this work, a real sourcing problem of scrap metal for a steel manufacturing company was solved to prove the applicability of the proposed approach. The research outcome revealed that the TBC of “trust” is the most important criterion, followed by the “cost”, leaving the “geographical location” criterion as the least important one. In this context, the RP of “flexibility” attained the highest relative weight compared to “agility”, which secured the lowest weight. The results also showed “absolute” correlation among MABAC, VIKOR, and OCRA compared to “very strong” correlation between TOPSIS and the others. This research can support supply chain managers to achieve supply chain systems that reduce not only sourcing costs, but also potential losses because of disrupting threats, by building resilient supply chains.

Suggested Citation

  • Ahmed Mohammed & Morteza Yazdani & Amar Oukil & Ernesto D. R. Santibanez Gonzalez, 2021. "A Hybrid MCDM Approach towards Resilient Sourcing," Sustainability, MDPI, vol. 13(5), pages 1-30, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2695-:d:509222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Yao & Béatrice M.K Meurier, 2012. "Understanding the supply chain resilience : a Dynamic Capabilities approach," Post-Print hal-01476959, HAL.
    2. Abbas Mardani & Edmundas Kazimieras Zavadskas & Kannan Govindan & Aslan Amat Senin & Ahmad Jusoh, 2016. "VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications," Sustainability, MDPI, vol. 8(1), pages 1-38, January.
    3. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    4. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    5. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    6. Daji Ergu & Gang Kou & Jennifer Shang, 2014. "A Modular-Based Supplier Evaluation Framework: A Comprehensive Data Analysis of ANP Structure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 883-916.
    7. Ahmed Mohammed & Irina Harris & Anthony Soroka & Mohamed Naim & Tim Ramjaun & Morteza Yazdani, 2021. "Gresilient supplier assessment and order allocation planning," Annals of Operations Research, Springer, vol. 296(1), pages 335-362, January.
    8. Qin, Jindong & Liu, Xinwang & Pedrycz, Witold, 2017. "An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment," European Journal of Operational Research, Elsevier, vol. 258(2), pages 626-638.
    9. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    10. Kavilal, E.G. & Prasanna Venkatesan, S. & Harsh Kumar, K.D., 2017. "An integrated fuzzy approach for prioritizing supply chain complexity drivers of an Indian mining equipment manufacturer," Resources Policy, Elsevier, vol. 51(C), pages 204-218.
    11. Parkan, Celik & Wu, Ming-Lu, 1999. "Measurement of the performance of an investment bank using the operational competitiveness rating procedure," Omega, Elsevier, vol. 27(2), pages 201-217, April.
    12. Alptekin Ulutaş & Ayşe Topal & Rim Bakhat, 2019. "An Application of Fuzzy Integrated Model in Green Supplier Selection," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-11, April.
    13. Konrad Zimmer & Magnus Fröhling & Frank Schultmann, 2016. "Sustainable supplier management -- a review of models supporting sustainable supplier selection, monitoring and development," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1412-1442, March.
    14. Seyedmohsen Hosseini & Abdullah Al Khaled, 2019. "A hybrid ensemble and AHP approach for resilient supplier selection," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 207-228, January.
    15. Yao, Yuan & Meurier, Beatrice, 2012. "Understanding the supply chain resilience: a Dynamic Capabilities approach," MPRA Paper 58124, University Library of Munich, Germany.
    16. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    17. Ting-Kwei Wang & Qian Zhang & Heap-Yih Chong & Xiangyu Wang, 2017. "Integrated Supplier Selection Framework in a Resilient Construction Supply Chain: An Approach via Analytic Hierarchy Process (AHP) and Grey Relational Analysis (GRA)," Sustainability, MDPI, vol. 9(2), pages 1-26, February.
    18. S. Saffarzadeh & A. Hadi-Vencheh & A. Jamshidi, 2019. "An Interval Based Score Method for Multiple Criteria Decision Making Problems," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1667-1687, September.
    19. Hosseini, Seyedmohsen & Morshedlou, Nazanin & Ivanov, Dmitry & Sarder, M.D. & Barker, Kash & Khaled, Abdullah Al, 2019. "Resilient supplier selection and optimal order allocation under disruption risks," International Journal of Production Economics, Elsevier, vol. 213(C), pages 124-137.
    20. López, Cristina & Ishizaka, Alessio, 2019. "A hybrid FCM-AHP approach to predict impacts of offshore outsourcing location decisions on supply chain resilience," Journal of Business Research, Elsevier, vol. 103(C), pages 495-507.
    21. Edmundas Kazimieras Zavadskas & Abbas Mardani & Zenonas Turskis & Ahmad Jusoh & Khalil MD Nor, 2016. "Development of TOPSIS Method to Solve Complicated Decision-Making Problems — An Overview on Developments from 2000 to 2015," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(03), pages 645-682, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rudiah Md Hanafiah & Nur Hazwani Karim & Noorul Shaiful Fitri Abdul Rahman & Saharuddin Abdul Hamid & Ahmed Maher Mohammed, 2022. "An Innovative Risk Matrix Model for Warehousing Productivity Performance," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    2. Vukašin Pajić & Milorad Kilibarda & Milan Andrejić, 2023. "A Novel Hybrid Approach for Evaluation of Resilient 4PL Provider for E-Commerce," Mathematics, MDPI, vol. 11(3), pages 1-26, January.
    3. Philip Marcel Karré, 2023. "The Thumbprint of a Hybrid Organization—A Multidimensional Model for Analysing Public/Private Hybrid Organizations," Public Organization Review, Springer, vol. 23(2), pages 777-791, June.
    4. Agarwal, Vernika & Mathiyazhagan, K. & Malhotra, Snigdha & Pimpunchat, Busayamas, 2023. "Building resilience for sustainability of MSMEs post COVID-19 outbreak: An Indian handicraft industry outlook," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    5. Minh-Tai Le & Nhat-Luong Nhieu, 2022. "A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    6. Reiner, Christian & Grumiller, Jan & Grohs, Hannes, 2022. "Lieferengpässe in Österreich? Globale Warenketten von Medizinprodukten während der COVID-19 Pandemie," Working Papers 69, Austrian Foundation for Development Research (ÖFSE).
    7. Mohammad Mojtahedi & Riza Yosia Sunindijo & Fatma Lestari & Suparni & Oktomi Wijaya, 2021. "Developing Hospital Emergency and Disaster Management Index Using TOPSIS Method," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    8. Radosław Depczyński & Jim Secka & Katarzyna Cheba & Carlotta D’Alessandro & Katarzyna Szopik-Depczyńska, 2023. "Decision-Making Approach in Sustainability Assessment in Steel Manufacturing Companies—Systematic Literature Review," Sustainability, MDPI, vol. 15(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed, Ahmed & Lopes de Sousa Jabbour, Ana Beatriz & Koh, Lenny & Hubbard, Nicolas & Chiappetta Jabbour, Charbel Jose & Al Ahmed, Teejan, 2022. "The sourcing decision-making process in the era of digitalization: A new quantitative methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    2. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    3. Mehdi Keshavarz-Ghorabaee, 2023. "Sustainable Supplier Selection and Order Allocation Using an Integrated ROG-Based Type-2 Fuzzy Decision-Making Approach," Mathematics, MDPI, vol. 11(9), pages 1-33, April.
    4. Roman Vavrek, 2019. "Evaluation of the Impact of Selected Weighting Methods on the Results of the TOPSIS Technique," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1821-1843, November.
    5. Alireza Arshadi Khamseh, 2021. "A Time-Dependent Sustainable–Flexible Supplier Selection Considering Uncertainty and TODIM Method in Iranian Dairy Industries," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(2), pages 113-126, June.
    6. Ahmed Mohammed & Irina Harris & Anthony Soroka & Mohamed Naim & Tim Ramjaun & Morteza Yazdani, 2021. "Gresilient supplier assessment and order allocation planning," Annals of Operations Research, Springer, vol. 296(1), pages 335-362, January.
    7. Chih-Hung Hsu & An-Yuan Chang & Ting-Yi Zhang & Wei-Da Lin & Wan-Ling Liu, 2021. "Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    8. Mateusz Piwowarski & Danuta Miłaszewicz & Małgorzata Łatuszyńska & Mariusz Borawski & Kesra Nermend, 2018. "Application of the Vector Measure Construction Method and Technique for Order Preference by Similarity Ideal Solution for the Analysis of the Dynamics of Changes in the Poverty Levels in the European ," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    9. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    10. Aida Rezaei & Amir Aghsami & Masoud Rabbani, 2021. "Supplier selection and order allocation model with disruption and environmental risks in centralized supply chain," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1036-1072, December.
    11. Islam, Samiul & Amin, Saman Hassanzadeh & Wardley, Leslie J., 2021. "Machine learning and optimization models for supplier selection and order allocation planning," International Journal of Production Economics, Elsevier, vol. 242(C).
    12. Kaur, Harpreet & Prakash Singh, Surya, 2021. "Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies," International Journal of Production Economics, Elsevier, vol. 231(C).
    13. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    14. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    15. Hisham Alidrisi, 2021. "An Innovative Job Evaluation Approach Using the VIKOR Algorithm," JRFM, MDPI, vol. 14(6), pages 1-19, June.
    16. Jing Wang & Jian-Qiang Wang & Hong-Yu Zhang & Xiao-Hong Chen, 2017. "Distance-Based Multi-Criteria Group Decision-Making Approaches with Multi-Hesitant Fuzzy Linguistic Information," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1069-1099, July.
    17. Audrius Čereška & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ina Tetsman & Irina Grinbergienė, 2016. "Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods," Sustainability, MDPI, vol. 8(7), pages 1-12, June.
    18. Pratibha Rani & Arunodaya Raj Mishra & Abbas Mardani & Fausto Cavallaro & Dalia Štreimikienė & Syed Abdul Rehman Khan, 2020. "Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    19. Giacomo Falcone & Anna Irene De Luca & Teodora Stillitano & Alfio Strano & Giuseppa Romeo & Giovanni Gulisano, 2016. "Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis," Sustainability, MDPI, vol. 8(8), pages 1-34, August.
    20. Shin Hee Baek & Jong Soo Kim, 2020. "Efficient Algorithms for a Large-Scale Supplier Selection and Order Allocation Problem Considering Carbon Emissions and Quantity Discounts," Mathematics, MDPI, vol. 8(10), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2695-:d:509222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.