IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2540-d506455.html
   My bibliography  Save this article

Analytic Hierarchy Process-Based Airport Ground Handling Equipment Purchase Decision Model

Author

Listed:
  • Yu-Jwo Tao

    (Department of Shipping and Transportation Management, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung City 202301, Taiwan)

  • Hsuan-Shih Lee

    (Department of Shipping and Transportation Management, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung City 202301, Taiwan)

  • Chang-Shu Tu

    (Department of Information Management, Chang Gung University, No. 259, WenHwa 1st Road, KweiShan, Taoyuan City 33302, Taiwan)

Abstract

The Airport ground handling services (AGHS) equipment supplier provider selection requires a safety guarantee in terms of the daily operations AGHS provider. AGHS providers seek to avoid aircraft damage and airline delays and ensure the provision of reliable and high-quality services. The primary objective of this paper was to develop purchasing decision model of the analytic hierarchy process (AHP), AHP-fuzzy linear programming (FLP), and AHP-Taguchi loss function (TLF) multi-choice goal programming (MCGP) purchase decision models to help the AGHS purchasing managers in selecting the best AGHS equipment supplier provider. The constructed models were assessed, and results obtained for the AHP-FLP and AHP-TLF-MCGP models were compared. We conducted a real-world example of supplier selection by an AGHS company by using the proposed models. The proposed model provides useful information and has practical value for AGHS providers.

Suggested Citation

  • Yu-Jwo Tao & Hsuan-Shih Lee & Chang-Shu Tu, 2021. "Analytic Hierarchy Process-Based Airport Ground Handling Equipment Purchase Decision Model," Sustainability, MDPI, vol. 13(5), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2540-:d:506455
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Fuhr Johannes & Beckers Thorsten, 2006. "Vertical Governance between Airlines and Airports - A Transaction Cost Analysis," Review of Network Economics, De Gruyter, vol. 5(4), pages 1-27, December.
    3. Schmidberger, Stephan & Bals, Lydia & Hartmann, Evi & Jahns, Christopher, 2009. "Ground handling services at European hub airports: Development of a performance measurement system for benchmarking," International Journal of Production Economics, Elsevier, vol. 117(1), pages 104-116, January.
    4. Amid, A. & Ghodsypour, S.H. & O'Brien, C., 2006. "Fuzzy multiobjective linear model for supplier selection in a supply chain," International Journal of Production Economics, Elsevier, vol. 104(2), pages 394-407, December.
    5. Zon-Yau Lee & Mei-Tai Chu & Yu-Ting Wang & Kuan-Ju Chen, 2020. "Industry Performance Appraisal Using Improved MCDM for Next Generation of Taiwan," Sustainability, MDPI, vol. 12(13), pages 1-18, June.
    6. Chien-Wen Shen & Yen-Ting Peng & Chang-Shu Tu, 2019. "Multi-Criteria Decision-Making Techniques for Solving the Airport Ground Handling Service Equipment Vendor Selection Problem," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Alruwaili & Liana Cipcigan, 2022. "Optimal Annual Operational Cost of a Hybrid Renewable-Based Microgrid to Increase the Power Resilience of a Critical Facility," Energies, MDPI, vol. 15(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irfan Ali & Armin Fügenschuh & Srikant Gupta & Umar Muhammad Modibbo, 2020. "The LR-Type Fuzzy Multi-Objective Vendor Selection Problem in Supply Chain Management," Mathematics, MDPI, vol. 8(9), pages 1-25, September.
    2. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    3. Chien-Wen Shen & Yen-Ting Peng & Chang-Shu Tu, 2019. "Multi-Criteria Decision-Making Techniques for Solving the Airport Ground Handling Service Equipment Vendor Selection Problem," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    4. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    5. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    6. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    7. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    8. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    9. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    10. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    11. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    12. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    13. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    14. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    15. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    16. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    17. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    18. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    19. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    20. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2540-:d:506455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.