IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12106-d670702.html
   My bibliography  Save this article

Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications

Author

Listed:
  • Ingunn Y. Gudbrandsdottir

    (Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland)

  • Nína M. Saviolidis

    (Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland)

  • Gudrun Olafsdottir

    (Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland)

  • Gudmundur V. Oddsson

    (Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland)

  • Hlynur Stefansson

    (Department of Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland)

  • Sigurdur G. Bogason

    (Faculty of Industrial Engineering, Mechanical Engineering and Computer Science, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland)

Abstract

Salmon is the most consumed farmed seafood in the EU and there is no indication that demand will abate. Yet salmon aquaculture’s environmental impacts are significant, and its future is likely to be shaped by demands of increased but at the same time more sustainable production. This study developed an integrated theoretical framework based on the multi-level perspective (MLP) and a global value chain (GVC) governance framework and applied it to the global farmed salmon value chain. The objective was to provide insights on the most likely transition pathway towards sustainability based on industry and expert perspectives. The perceptions on challenges and drivers of change, were gathered through focus groups and in-depth interviews, and fitted to the integrated framework to facilitate the transition pathway analysis. Viewing the qualitative findings in the context of the MLP framework provided information about the current workings of the system, the drivers of change in the socio-technical landscape and niche-innovations and their potential to challenge or enhance the current system and thus indicated possible system transitions. To emphasize the role of industry actors in shaping the future of the salmon value chain, the analysis was strengthened using the GVC model which added information about power relations, signaling the ability of system actors to motivate or resist change. The findings indicate that, due to resistance in the regime and the fact that niche-innovations are not yet sufficiently developed, the farmed salmon value chain will continue to be predominated by traditional sea-based aquaculture but that there will be a gradual shift towards more diversity in terms of production methods in response to landscape pressures. The discussion addresses sustainability challenges and policy implications for the farmed salmon value chain and highlights the need for a food system perspective.

Suggested Citation

  • Ingunn Y. Gudbrandsdottir & Nína M. Saviolidis & Gudrun Olafsdottir & Gudmundur V. Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Transition Pathways for the Farmed Salmon Value Chain: Industry Perspectives and Sustainability Implications," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12106-:d:670702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12106/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12106/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gary Gereffi & Joonkoo Lee, 2016. "Economic and Social Upgrading in Global Value Chains and Industrial Clusters: Why Governance Matters," Journal of Business Ethics, Springer, vol. 133(1), pages 25-38, January.
    2. Anna Carbone, 2017. "Food supply chains: coordination governance and other shaping forces," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 5(1), pages 1-23, December.
    3. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    4. Rosamond L. Naylor & Rebecca J. Goldburg & Jurgenne H. Primavera & Nils Kautsky & Malcolm C. M. Beveridge & Jason Clay & Carl Folke & Jane Lubchenco & Harold Mooney & Max Troell, 2000. "Effect of aquaculture on world fish supplies," Nature, Nature, vol. 405(6790), pages 1017-1024, June.
    5. Jamali Jaghdani, Tinoush & Čechura, Lukáš & Ólafsdóttir, Guðrún & Thakur, Maitri, 2020. "Market Power in Norwegian Salmon Industry," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305590, German Association of Agricultural Economists (GEWISOLA).
    6. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    7. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    8. Nína M. Saviolidis & Gudrun Olafsdottir & Mariana Nicolau & Antonella Samoggia & Elise Huber & Laura Brimont & Matthew Gorton & David von Berlepsch & Hildigunnur Sigurdardottir & Margherita Del Prete , 2020. "Stakeholder Perceptions of Policy Tools in Support of Sustainable Food Consumption in Europe: Policy Implications," Sustainability, MDPI, vol. 12(17), pages 1-24, September.
    9. Geels, Frank W. & Kern, Florian & Fuchs, Gerhard & Hinderer, Nele & Kungl, Gregor & Mylan, Josephine & Neukirch, Mario & Wassermann, Sandra, 2016. "The enactment of socio-technical transition pathways: A reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014)," Research Policy, Elsevier, vol. 45(4), pages 896-913.
    10. Ingunn Y. Gudbrandsdottir & Gudrun Olafsdottir & Gudmundur Valur Oddsson & Hlynur Stefansson & Sigurdur G. Bogason, 2021. "Operationalization of Interorganizational Fairness in Food Systems: From a Social Construct to Quantitative Indicators," Agriculture, MDPI, vol. 11(1), pages 1-24, January.
    11. Anna Carbone, 2017. "Erratum to: Food supply chains: coordination governance and other shaping forces," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 5(1), pages 1-1, December.
    12. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    13. Jay Abolofia & Frank Asche & James E. Wilen, 2017. "The Cost of Lice: Quantifying the Impacts of Parasitic Sea Lice on Farmed Salmon," Marine Resource Economics, University of Chicago Press, vol. 32(3), pages 329-349.
    14. Geels, Frank W., 2004. "From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory," Research Policy, Elsevier, vol. 33(6-7), pages 897-920, September.
    15. Köhler, Jonathan & Turnheim, Bruno & Hodson, Mike, 2020. "Low carbon transitions pathways in mobility: Applying the MLP in a combined case study and simulation bridging analysis of passenger transport in the Netherlands," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    16. Nesar Ahmed & Shirley Thompson & Giovanni M. Turchini, 2020. "Organic aquaculture productivity, environmental sustainability, and food security: insights from organic agriculture," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(6), pages 1253-1267, December.
    17. Rosamond L. Naylor & Ronald W. Hardy & Alejandro H. Buschmann & Simon R. Bush & Ling Cao & Dane H. Klinger & David C. Little & Jane Lubchenco & Sandra E. Shumway & Max Troell, 2021. "A 20-year retrospective review of global aquaculture," Nature, Nature, vol. 591(7851), pages 551-563, March.
    18. Hamid El Bilali, 2019. "The Multi-Level Perspective in Research on Sustainability Transitions in Agriculture and Food Systems: A Systematic Review," Agriculture, MDPI, vol. 9(4), pages 1-24, April.
    19. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McGarraghy, Seán & Olafsdottir, Gudrun & Kazakov, Rossen & Huber, Élise & Loveluck, William & Gudbrandsdottir, Ingunn Y. & Čechura, Lukáš & Esposito, Gianandrea & Samoggia, Antonella & Aubert, Pierre-, 2022. "Conceptual system dynamics and agent-based modelling simulation of interorganisational fairness in food value chains: Research agenda and case studies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2).
    2. Seán McGarraghy & Gudrun Olafsdottir & Rossen Kazakov & Élise Huber & William Loveluck & Ingunn Y. Gudbrandsdottir & Lukáš Čechura & Gianandrea Esposito & Antonella Samoggia & Pierre-Marie Aubert & Da, 2022. "Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisational Fairness in Food Value Chains: Research Agenda and Case Studies," Agriculture, MDPI, vol. 12(2), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McGarraghy, Seán & Olafsdottir, Gudrun & Kazakov, Rossen & Huber, Élise & Loveluck, William & Gudbrandsdottir, Ingunn Y. & Čechura, Lukáš & Esposito, Gianandrea & Samoggia, Antonella & Aubert, Pierre-, 2022. "Conceptual system dynamics and agent-based modelling simulation of interorganisational fairness in food value chains: Research agenda and case studies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2).
    2. Seán McGarraghy & Gudrun Olafsdottir & Rossen Kazakov & Élise Huber & William Loveluck & Ingunn Y. Gudbrandsdottir & Lukáš Čechura & Gianandrea Esposito & Antonella Samoggia & Pierre-Marie Aubert & Da, 2022. "Conceptual System Dynamics and Agent-Based Modelling Simulation of Interorganisational Fairness in Food Value Chains: Research Agenda and Case Studies," Agriculture, MDPI, vol. 12(2), pages 1-30, February.
    3. Johanna Leväsluoto & Johanna Kohl & Anton Sigfrids & Jussi Pihlajamäki & Janne Martikainen, 2021. "Digitalization as an Engine for Change? Building a Vision Pathway towards a Sustainable Health Care System by Using the MLP and Health Economic Decision Modelling," Sustainability, MDPI, vol. 13(23), pages 1-24, November.
    4. Cheng Wang & Tao Lv & Rongjiang Cai & Jianfeng Xu & Liya Wang, 2022. "Bibliometric Analysis of Multi-Level Perspective on Sustainability Transition Research," Sustainability, MDPI, vol. 14(7), pages 1-31, March.
    5. Zhu, Bing & Nguyen, Mai & Sarm Siri, Nang & Malik, Ashish, 2022. "Towards a transformative model of circular economy for SMEs," Journal of Business Research, Elsevier, vol. 144(C), pages 545-555.
    6. André Sorensen & Anna-Katharina Brenner, 2021. "Cities, Urban Property Systems, and Sustainability Transitions: Contested Processes of Institutional Change and the Regulation of Urban Property Development," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    7. Jain, Sanjay, 2020. "Fumbling to the future? Socio-technical regime change in the recorded music industry," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    8. Kriechbaum, Michael & Posch, Alfred & Hauswiesner, Angelika, 2021. "Hype cycles during socio-technical transitions: The dynamics of collective expectations about renewable energy in Germany," Research Policy, Elsevier, vol. 50(9).
    9. McMeekin, Andrew & Geels, Frank W. & Hodson, Mike, 2019. "Mapping the winds of whole system reconfiguration: Analysing low-carbon transformations across production, distribution and consumption in the UK electricity system (1990–2016)," Research Policy, Elsevier, vol. 48(5), pages 1216-1231.
    10. Fabíola Sostmeyer Polita & Lívia Madureira, 2021. "Transition Pathways of Agroecological Innovation in Portugal’s Douro Wine Region. A Multi-Level Perspective," Land, MDPI, vol. 10(3), pages 1-20, March.
    11. Fabíola Sostmeyer Polita & Lívia Madureira, 2021. "Evolution of Short Food Supply Chain Innovation Niches and Its Anchoring to the Socio-Technical Regime: The Case of Direct Selling through Collective Action in North-West Portugal," Sustainability, MDPI, vol. 13(24), pages 1-24, December.
    12. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    13. Weigelt, Carmen & Lu, Shaohua & Verhaal, J. Cameron, 2021. "Blinded by the sun: The role of prosumers as niche actors in incumbent firms’ adoption of solar power during sustainability transitions," Research Policy, Elsevier, vol. 50(9).
    14. María Elena López Reyes & Willem A. Zwagers & Ingrid J. Mulder, 2020. "Considering the Human-Dimension to Make Sustainable Transitions Actionable," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    15. Jonas Heiberg & Christian Binz & Bernhard Truffer, 2020. "Assessing transitions through socio-technical network analysis – a methodological framework and a case study from the water sector," Papers in Evolutionary Economic Geography (PEEG) 2035, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Aug 2020.
    16. Fuenfschilling, Lea & Binz, Christian, 2018. "Global socio-technical regimes," Research Policy, Elsevier, vol. 47(4), pages 735-749.
    17. Geels, Frank W., 2020. "Micro-foundations of the multi-level perspective on socio-technical transitions: Developing a multi-dimensional model of agency through crossovers between social constructivism, evolutionary economics," Technological Forecasting and Social Change, Elsevier, vol. 152(C).
    18. Svensson, Oscar & Nikoleris, Alexandra, 2018. "Structure reconsidered: Towards new foundations of explanatory transitions theory," Research Policy, Elsevier, vol. 47(2), pages 462-473.
    19. Heiberg, Jonas & Truffer, Bernhard & Binz, Christian, 2022. "Assessing transitions through socio-technical configuration analysis – a methodological framework and a case study in the water sector," Research Policy, Elsevier, vol. 51(1).
    20. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12106-:d:670702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.