IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11949-d667325.html
   My bibliography  Save this article

Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study

Author

Listed:
  • Ashok Kumar

    (CSIR-Central Building Research Institute, Roorkee 247667, India
    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India)

  • Pardeep Singh

    (Institute of Environmental Studies, Kurukshetra University, Kurukshetra 136119, India)

  • Nishant Raj Kapoor

    (CSIR-Central Building Research Institute, Roorkee 247667, India
    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India)

  • Chandan Swaroop Meena

    (CSIR-Central Building Research Institute, Roorkee 247667, India
    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India)

  • Kshitij Jain

    (Department of Computer Science Engineering, College of Engineering, Roorkee 247667, India)

  • Kishor S. Kulkarni

    (CSIR-Central Building Research Institute, Roorkee 247667, India
    Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India)

  • Raffaello Cozzolino

    (Department of Engineering, University of Rome Niccolò Cusano, 00166 Roma, Italy)

Abstract

Buildings are accountable for waste generation, utilization of natural resources, and ecological contamination. The construction sector is one of the biggest consumers of resources available naturally and is responsible for significant CO 2 emissions on the planet. The effects of the buildings on the environment are commonly determined using Life Cycle Assessments (LCA). The investigation and comparison of the Life Cycle Ecological Footprint (LCEF) and Life Cycle Energy (LCE) of five residential buildings situated in the composite climatic zone of India is presented in this study. The utilization of resources (building materials) along with developing a mobile application and a generic model to choose low emission material is the uniqueness of this study. The utilization of eco-friendly building materials and how these are more efficient than conventional building materials are also discussed. In this investigation, the two approaches, (a) Life Cycle Energy Assessment (LCEA) and (b) Life Cycle Ecological Footprint (LCEF), are discussed to evaluate the impacts of building materials on the environment. The energy embedded due to the materials used in a building is calculated to demonstrate the prevalence of innovative construction techniques over traditional materials. The generic model developed to assess the LCEA of residential buildings in the composite climate of India and the other results show that the utilization of low-energy building materials brings about a significant decrease in the LCEF and the LCE of the buildings. The results are suitable for a similar typology of buildings elsewhere in different climatic zone as well. The MATLAB model presented will help researchers globally to follow-up or replicate the study in their country. The developed user-friendly mobile application will enhance the awareness related to energy, environment, ecology, and sustainable development in the general public. This study can help in understanding and thus reducing the ecological burden of building materials, eventually leading towards sustainable development.

Suggested Citation

  • Ashok Kumar & Pardeep Singh & Nishant Raj Kapoor & Chandan Swaroop Meena & Kshitij Jain & Kishor S. Kulkarni & Raffaello Cozzolino, 2021. "Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11949-:d:667325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11949/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11949/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Monika Gandhi & Ashok Kumar & Rajasekar Elangovan & Chandan Swaroop Meena & Kishor S. Kulkarni & Anuj Kumar & Garima Bhanot & Nishant R. Kapoor, 2020. "A Review on Shape-Stabilized Phase Change Materials for Latent Energy Storage in Buildings," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Baidya, S. & Borken-Kleefeld, J., 2009. "Atmospheric emissions from road transportation in India," Energy Policy, Elsevier, vol. 37(10), pages 3812-3822, October.
    3. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    4. Rosaliya Kurian & Kishor Sitaram Kulkarni & Prasanna Venkatesan Ramani & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Estimation of Carbon Footprint of Residential Building in Warm Humid Climate of India through BIM," Energies, MDPI, vol. 14(14), pages 1-16, July.
    5. Tabish Alam & Nagesh Babu Balam & Kishor Sitaram Kulkarni & Md Irfanul Haque Siddiqui & Nishant Raj Kapoor & Chandan Swaroop Meena & Ashok Kumar & Raffaello Cozzolino, 2021. "Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review," Energies, MDPI, vol. 14(19), pages 1-23, September.
    6. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    7. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    8. Laleman, Ruben & Albrecht, Johan & Dewulf, Jo, 2011. "Life Cycle Analysis to estimate the environmental impact of residential photovoltaic systems in regions with a low solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 267-281, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cecília Szigeti & Zoltán Major & Dániel Róbert Szabó & Áron Szennay, 2023. "The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary," Resources, MDPI, vol. 12(1), pages 1-15, January.
    2. Bassem Jamoussi & Asad Abu-Rizaiza & Ali AL-Haij, 2022. "Sustainable Building Standards, Codes and Certification Systems: The Status Quo and Future Directions in Saudi Arabia," Sustainability, MDPI, vol. 14(16), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerbinet, Saïcha & Belboom, Sandra & Léonard, Angélique, 2014. "Life Cycle Analysis (LCA) of photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 747-753.
    2. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    3. Menoufi, Karim & Chemisana, Daniel & Rosell, Joan I., 2013. "Life Cycle Assessment of a Building Integrated Concentrated Photovoltaic scheme," Applied Energy, Elsevier, vol. 111(C), pages 505-514.
    4. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    5. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    6. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    7. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    8. Parisi, Maria Laura & Maranghi, Simone & Basosi, Riccardo, 2014. "The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 124-138.
    9. Cucchiella, Federica & D'Adamo, Idiano, 2012. "Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5245-5259.
    10. Martin A. Hubbe, 2023. "Sustainable Composites: A Review with Critical Questions to Guide Future Initiatives," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    11. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    12. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    13. Vimpari, Jussi & Junnila, Seppo, 2017. "Evaluating decentralized energy investments: Spatial value of on-site PV electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1217-1222.
    14. Danielle Devogelaer, 2013. "Working Paper 07-13 - Walking the green mile in Employment - Employment projections for a green future," Working Papers 1307, Federal Planning Bureau, Belgium.
    15. Beylot, Antoine & Payet, Jérôme & Puech, Clément & Adra, Nadine & Jacquin, Philippe & Blanc, Isabelle & Beloin-Saint-Pierre, Didier, 2014. "Environmental impacts of large-scale grid-connected ground-mounted PV installations," Renewable Energy, Elsevier, vol. 61(C), pages 2-6.
    16. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    17. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    18. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    19. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11949-:d:667325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.