IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11879-d666042.html
   My bibliography  Save this article

Location-Routing Optimization with Renting Social Vehicles in a Two-Stage E-Waste Recycling Network

Author

Listed:
  • Feifeng Zheng

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Zhiyu Sun

    (Glorious Sun School of Business and Management, Donghua University, Shanghai 200051, China)

  • Ming Liu

    (School of Economics and Management, Tongji University, Shanghai 200092, China)

Abstract

E-waste recycling has been a hot topic in recent years. The low efficiency and high-operation cost of recycling make it more important to build perfect e-waste recycling networks. To hedge against the limitation of vehicle resources being often neglected in existing research, we propose a mixed integer linear programming model of e-waste recycling by renting idle social vehicles. In the model, both decisions made on the location selection of recycling sites and vehicle routings satisfying all of the demand nodes over the network within time windows are required to minimize the total operating cost. An improved genetic algorithm and heuristic algorithm are designed to solve the model, and numerical experiments are produced to demonstrate the effectiveness of the proposed model and algorithms.

Suggested Citation

  • Feifeng Zheng & Zhiyu Sun & Ming Liu, 2021. "Location-Routing Optimization with Renting Social Vehicles in a Two-Stage E-Waste Recycling Network," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11879-:d:666042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    2. Schiffer, Maximilian & Walther, Grit, 2017. "The electric location routing problem with time windows and partial recharging," European Journal of Operational Research, Elsevier, vol. 260(3), pages 995-1013.
    3. Lin Zhou & Xu Wang & Lin Ni & Yun Lin, 2016. "Location-Routing Problem with Simultaneous Home Delivery and Customer’s Pickup for City Distribution of Online Shopping Purchases," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    4. Pourhejazy, Pourya & Zhang, Dali & Zhu, Qinghua & Wei, Fangfang & Song, Shuang, 2021. "Integrated E-waste transportation using capacitated general routing problem with time-window," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    5. Zhao, Jiahong & Ke, Ginger Y., 2017. "Incorporating inventory risks in location-routing models for explosive waste management," International Journal of Production Economics, Elsevier, vol. 193(C), pages 123-136.
    6. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    7. Ponboon, Sattrawut & Qureshi, Ali Gul & Taniguchi, Eiichi, 2016. "Branch-and-price algorithm for the location-routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 1-19.
    8. Dukkanci, Okan & Peker, Meltem & Kara, Bahar Y., 2019. "Green hub location problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 116-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    2. Saldanha-da-Gama, Francisco, 2022. "Facility Location in Logistics and Transportation: An enduring relationship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    3. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    4. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    5. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    6. Raeesi, Ramin & Zografos, Konstantinos G., 2022. "Coordinated routing of electric commercial vehicles with intra-route recharging and en-route battery swapping," European Journal of Operational Research, Elsevier, vol. 301(1), pages 82-109.
    7. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    8. Longlong Leng & Yanwei Zhao & Zheng Wang & Jingling Zhang & Wanliang Wang & Chunmiao Zhang, 2019. "A Novel Hyper-Heuristic for the Biobjective Regional Low-Carbon Location-Routing Problem with Multiple Constraints," Sustainability, MDPI, vol. 11(6), pages 1-31, March.
    9. Masmoudi, Mohamed Amine & Hosny, Manar & Demir, Emrah & Genikomsakis, Konstantinos N. & Cheikhrouhou, Naoufel, 2018. "The dial-a-ride problem with electric vehicles and battery swapping stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 392-420.
    10. Chunlin Xin & Jie Wang & Ziping Wang & Chia-Huei Wu & Muhammad Nawaz & Sang-Bing Tsai, 2022. "Reverse logistics research of municipal hazardous waste: a literature review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1495-1531, February.
    11. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    12. Leggieri, Valeria & Haouari, Mohamed, 2017. "A practical solution approach for the green vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 97-112.
    13. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    14. Arsalan Rahmani & Meysam Hosseini, 2022. "A time-dependent green location-routing problem with variable speed of vehicles," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 945-973, September.
    15. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
    16. Macrina, Giusy & Laporte, Gilbert & Guerriero, Francesca & Di Puglia Pugliese, Luigi, 2019. "An energy-efficient green-vehicle routing problem with mixed vehicle fleet, partial battery recharging and time windows," European Journal of Operational Research, Elsevier, vol. 276(3), pages 971-982.
    17. Akeb, Hakim & Moncef, Btissam & Durand, Bruno, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 223-233.
    18. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    19. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    20. Ghazale Kordi & Parsa Hasanzadeh-Moghimi & Mohammad Mahdi Paydar & Ebrahim Asadi-Gangraj, 2023. "A multi-objective location-routing model for dental waste considering environmental factors," Annals of Operations Research, Springer, vol. 328(1), pages 755-792, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11879-:d:666042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.