IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11418-d657576.html
   My bibliography  Save this article

Two-Level Planning of Customized Bus Routes Based on Uncertainty Theory

Author

Listed:
  • Bing Zhang

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Zhishan Zhong

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Zi Sang

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

  • Mingyang Zhang

    (School of Architecture and Civil Engineering, Jiangxi V&T College Communications, Nanchang 330013, China)

  • Yunqiang Xue

    (School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China)

Abstract

The optimization problem of customized bus routes is affected by uncertain factors in reality; therefore, this paper introduces uncertainty theory to study the above problem. A two-level planning model that takes the maximum total revenue of the bus company as the upper-level goal and the minimum total travel cost of passengers as the lower-level goal is established, using uncertainty theory to study and solve practical problems with uncertain factors. The genetic algorithm is used to solve the model, and the feasibility of the model is verified through a case study. The research results show that the application of the two-level model of customized bus route planning based on uncertain vehicle operating time established in this paper to customize bus route planning can take into account the travel needs of passengers and high-quality experiences while also bringing benefits to enterprises and achieving a win–win situation. The research in this article provides theoretical support for the optimization of customized bus routes.

Suggested Citation

  • Bing Zhang & Zhishan Zhong & Zi Sang & Mingyang Zhang & Yunqiang Xue, 2021. "Two-Level Planning of Customized Bus Routes Based on Uncertainty Theory," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11418-:d:657576
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    2. Ceder, Avishai & Wilson, Nigel H. M., 1986. "Bus network design," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 331-344, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wagner, Sebastian & Brandt, Tobias & Neumann, Dirk, 2016. "In free float: Developing Business Analytics support for carsharing providers," Omega, Elsevier, vol. 59(PA), pages 4-14.
    2. Luca Quadrifoglio & Randolph W. Hall & Maged M. Dessouky, 2006. "Performance and Design of Mobility Allowance Shuttle Transit Services: Bounds on the Maximum Longitudinal Velocity," Transportation Science, INFORMS, vol. 40(3), pages 351-363, August.
    3. Liu, Tao & Ceder, Avishai (Avi), 2015. "Analysis of a new public-transport-service concept: Customized bus in China," Transport Policy, Elsevier, vol. 39(C), pages 63-76.
    4. Nayan, Ashish & Wang, David Z.W., 2017. "Optimal bus transit route packaging in a privatized contracting regime," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 146-157.
    5. Wang, David Z.W. & Nayan, Ashish & Szeto, W.Y., 2018. "Optimal bus service design with limited stop services in a travel corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 70-86.
    6. Seda Yanık & Salim Yılmaz, 2023. "Optimal design of a bus route with short-turn services," Public Transport, Springer, vol. 15(1), pages 169-197, March.
    7. Yiyo Kuo, 2014. "Design method using hybrid of line-type and circular-type routes for transit network system optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 600-613, July.
    8. Stefan Illgen & Michael Höck, 2020. "Establishing car sharing services in rural areas: a simulation-based fleet operations analysis," Transportation, Springer, vol. 47(2), pages 811-826, April.
    9. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    10. Ceder, A. & Golany, B. & Tal, O., 2001. "Creating bus timetables with maximal synchronization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(10), pages 913-928, December.
    11. Mathias Michaelis & Anita Schöbel, 2009. "Integrating line planning, timetabling, and vehicle scheduling: a customer-oriented heuristic," Public Transport, Springer, vol. 1(3), pages 211-232, August.
    12. Aldaihani, Majid M. & Quadrifoglio, Luca & Dessouky, Maged M. & Hall, Randolph, 2004. "Network design for a grid hybrid transit service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 511-530, August.
    13. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    14. Luo, Sida & Nie, Yu (Marco), 2020. "Paired-line hybrid transit design considering spatial heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 320-339.
    15. Roca-Riu, Mireia & Estrada, Miquel & Trapote, César, 2012. "The design of interurban bus networks in city centers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1153-1165.
    16. Andrés Fielbaum & Sergio Jara-Díaz & Antonio Gschwender, 2018. "Transit Line Structures in a General Parametric City: The Role of Heuristics," Transportation Science, INFORMS, vol. 52(5), pages 1092-1105, October.
    17. Fan, Wenbo & Mei, Yu & Gu, Weihua, 2018. "Optimal design of intersecting bimodal transit networks in a grid city," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 203-226.
    18. Evelien van der Hurk & Leo Kroon & Gábor Maróti, 2018. "Passenger Advice and Rolling Stock Rescheduling Under Uncertainty for Disruption Management," Service Science, INFORMS, vol. 52(6), pages 1391-1411, December.
    19. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    20. Benjamin Otto, 2019. "Aggregation techniques for frequency assignment in public transportation," Public Transport, Springer, vol. 11(1), pages 51-87, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11418-:d:657576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.