IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3101-d344851.html
   My bibliography  Save this article

Analysis on Spatial Pattern and Driving Factors of Carbon Emission in Urban–Rural Fringe Mixed-Use Communities: Cases Study in East Asia

Author

Listed:
  • Xiaoqing Zhu

    (College of Design and Architecture, Zhejiang University of Technology, Hangzhou 310058, China)

  • Tiancheng Zhang

    (College of Design and Architecture, Zhejiang University of Technology, Hangzhou 310058, China)

  • Weijun Gao

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Danying Mei

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

Abstract

Urban-intensive areas are responsible for an estimated 80% of greenhouse gas emissions, particularly carbon dioxide. The urban–rural fringe areas emit more greenhouse gases than urban centers. The purpose of this study is to analyze the spatial pattern and driving factors of carbon emissions in urban–rural fringe mixed-use communities, and to develop planning methods to reduce carbon emissions in communities. This study identifies mixed-use communities in East Asian urban–rural fringe areas as industrial, commercial, tourism, and rental-apartment communities, subsequently using the emission factor method to calculate carbon emissions. The statistical information grid analysis and geographic information systems spatial analysis method are employed to analyze the spatial pattern of carbon emission and explore the relationship between established space, industrial economy, material consumption, social behavior, and carbon emission distribution characteristics by partial least squares regression, ultimately summing up the spatial pattern of carbon emission in the urban–rural fringe areas of East Asia. Results show that (1) mixed-use communities in the East Asian urban–rural fringe areas face tremendous pressure to reduce emissions. Mixed-use community carbon emissions in the late urbanization period are lower than those the early urbanization. (2) Mixed-use community carbon emission is featured by characteristics, such as planning structure decisiveness, road directionality, infrastructure directionality, and industrial linkage. (3) Industrial communities produce the highest carbon emissions, followed by rental-apartment communities, business communities, and tourism communities. (4) The driving factor that most affects the spatial distribution of carbon emissions is the material energy consumption. The fuel consumption per unit of land is the largest driver of carbon emissions. Using the obtained spatial pattern and its driving factors of carbon emissions, this study provides suggestions for planning and construction, industrial development, material consumption, and convenient life guidance.

Suggested Citation

  • Xiaoqing Zhu & Tiancheng Zhang & Weijun Gao & Danying Mei, 2020. "Analysis on Spatial Pattern and Driving Factors of Carbon Emission in Urban–Rural Fringe Mixed-Use Communities: Cases Study in East Asia," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3101-:d:344851
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Druckman, Angela & Jackson, Tim, 2009. "The carbon footprint of UK households 1990-2004: A socio-economically disaggregated, quasi-multi-regional input-output model," Ecological Economics, Elsevier, vol. 68(7), pages 2066-2077, May.
    2. Li, Jia & Liang, Xi & Cockerill, Tim, 2011. "Getting ready for carbon capture and storage through a ‘CCS (Carbon Capture and Storage) Ready Hub’: A case study of Shenzhen city in Guangdong province, China," Energy, Elsevier, vol. 36(10), pages 5916-5924.
    3. Paul Chatterton, 2013. "Towards an Agenda for Post-carbon Cities: Lessons from Lilac, the UK's First Ecological, Affordable Cohousing Community," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 37(5), pages 1654-1674, September.
    4. Maria Teresa Borzacchiello & Peter Nijkamp & Eric Koomen, 2010. "Accessibility and Urban Development: A Grid-Based Comparative Statistical Analysis of Dutch Cities," Environment and Planning B, , vol. 37(1), pages 148-169, February.
    5. Li, Huanan & Mu, Hailin & Zhang, Ming & Gui, Shusen, 2012. "Analysis of regional difference on impact factors of China’s energy – Related CO2 emissions," Energy, Elsevier, vol. 39(1), pages 319-326.
    6. Feng, Y.Y. & Chen, S.Q. & Zhang, L.X., 2013. "System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China," Ecological Modelling, Elsevier, vol. 252(C), pages 44-52.
    7. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    8. Wang, Changjian & Wang, Fei & Zhang, Xinlin & Yang, Yu & Su, Yongxian & Ye, Yuyao & Zhang, Hongou, 2017. "Examining the driving factors of energy related carbon emissions using the extended STIRPAT model based on IPAT identity in Xinjiang," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 51-61.
    9. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    10. Wang, Shaojian & Liu, Xiaoping, 2017. "China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces," Applied Energy, Elsevier, vol. 200(C), pages 204-214.
    11. Kuishuang Feng & Yim Ling Siu & Dabo Guan & Klaus Hubacek, 2012. "Analyzing Drivers of Regional Carbon Dioxide Emissions for China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 600-611, August.
    12. Galeotti, Marzio & Lanza, Alessandro & Pauli, Francesco, 2006. "Reassessing the environmental Kuznets curve for CO2 emissions: A robustness exercise," Ecological Economics, Elsevier, vol. 57(1), pages 152-163, April.
    13. Eugene A. Rosa & Thomas Dietz, 2012. "Human drivers of national greenhouse-gas emissions," Nature Climate Change, Nature, vol. 2(8), pages 581-586, August.
    14. Charoenkit, Sasima & Kumar, S., 2014. "Environmental sustainability assessment tools for low carbon and climate resilient low income housing settlements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 509-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian Cheng & Xiaobei Jiang & Haodong Zhang & Wuhong Wang & Chunwen Sun, 2020. "Data-Driven Detection Methods on Driver’s Pedal Action Intensity Using Triboelectric Nano-Generators," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    2. Pingping Xiong & Xiaojie Wu & Jing Ye, 2023. "Building a novel multivariate nonlinear MGM(1,m,N|γ) model to forecast carbon emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9647-9671, September.
    3. Liya Yang & Honghui Zhang & Xinqi Liao & Haiqi Wang & Yong Bian & Geng Liu & Weiling Luo, 2023. "The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province," IJERPH, MDPI, vol. 20(3), pages 1-22, February.
    4. Limei Song & Feng Xu & Ming Sheng & Baohua Wen, 2023. "The Relationship between Rural Spatial Form and Carbon Emission—A Case Study of Suburban Integrated Villages in Hunan Province, China," Land, MDPI, vol. 12(8), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    2. Tian, Jing & Andraded, Celio & Lumbreras, Julio & Guan, Dabo & Wang, Fangzhi & Liao, Hua, 2018. "Integrating Sustainability Into City-level CO2 Accounting: Social Consumption Pattern and Income Distribution," Ecological Economics, Elsevier, vol. 153(C), pages 1-16.
    3. Shuai, Chenyang & Shen, Liyin & Jiao, Liudan & Wu, Ya & Tan, Yongtao, 2017. "Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011," Applied Energy, Elsevier, vol. 187(C), pages 310-325.
    4. Herui Cui & Ruirui Wu & Tian Zhao, 2018. "Decomposition and Forecasting of CO 2 Emissions in China’s Power Sector Based on STIRPAT Model with Selected PLS Model and a Novel Hybrid PLS-Grey-Markov Model," Energies, MDPI, vol. 11(11), pages 1-19, November.
    5. Li, Zhihui & Deng, Xiangzheng & Peng, Lu, 2020. "Uncovering trajectories and impact factors of CO2 emissions: A sectoral and spatially disaggregated revisit in Beijing," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    6. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    8. Hui Wang & Guangxing Ji & Jisheng Xia, 2019. "Analysis of Regional Differences in Energy-Related PM 2.5 Emissions in China: Influencing Factors and Mitigation Countermeasures," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    9. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    10. Ling Xiong & Shaozhou Qi, 2018. "Financial Development And Carbon Emissions In Chinese Provinces: A Spatial Panel Data Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 447-464, March.
    11. Lili Sun & Huijuan Cui & Quansheng Ge, 2021. "Driving Factors and Future Prediction of Carbon Emissions in the ‘Belt and Road Initiative’ Countries," Energies, MDPI, vol. 14(17), pages 1-21, September.
    12. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    13. Dong Jichang & He Jing & Li Xiuting & Mou Xindi & Dong Zhi, 2020. "The Effect of Industrial Structure Change on Carbon Dioxide Emissions: A Cross-Country Panel Analysis," Journal of Systems Science and Information, De Gruyter, vol. 8(1), pages 1-16, February.
    14. Wang, Yuan & Zhang, Xiang & Kubota, Jumpei & Zhu, Xiaodong & Lu, Genfa, 2015. "A semi-parametric panel data analysis on the urbanization-carbon emissions nexus for OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 704-709.
    15. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    16. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    17. Minda Ma & Liyin Shen & Hong Ren & Weiguang Cai & Zhili Ma, 2017. "How to Measure Carbon Emission Reduction in China’s Public Building Sector: Retrospective Decomposition Analysis Based on STIRPAT Model in 2000–2015," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    18. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    19. Jiancheng Qin & Hui Tao & Minjin Zhan & Qamar Munir & Karthikeyan Brindha & Guijin Mu, 2019. "Scenario Analysis of Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    20. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3101-:d:344851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.