IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2445-d334917.html
   My bibliography  Save this article

Pathways to Carbon-Neutral Cities Prior to a National Policy

Author

Listed:
  • Jani Laine

    (Department of Built Environment, School of Engineering, Aalto University, 00076 Aalto, Finland)

  • Jukka Heinonen

    (Faculty of Civil and Environmental Engineering, University of Iceland, 107 Reykjavik, Iceland)

  • Seppo Junnila

    (Department of Built Environment, School of Engineering, Aalto University, 00076 Aalto, Finland)

Abstract

Some cities have set carbon neutrality targets prior to national or state-wide neutrality targets, which makes the shift to carbon neutrality more difficult, as the surrounding system does not support this. The purpose of this paper was to evaluate different options for a progressive city to reach carbon neutrality in energy prior to the surrounding system. The study followed the C40 Cities definition of a carbon-neutral city and used the City of Vantaa in Finland as a progressive case aiming for carbon neutrality by 2030, five years before the national target for carbon neutrality. The study mapped the carbon neutrality process based on City documents and national statistics, and validated it through process-owner interviews. It was identified that most of the measures in the carbon neutrality process were actually outside the jurisdiction of the City, which outsources the responsibility for the majority of carbon neutrality actions to either private properties or national actors with broader boundaries. The only major measure in the City’s direct control was the removal of carbon emissions from municipal district heat production, which potentially represent 30% of the City’s reported carbon emissions and 58% of its energy-related carbon emissions. Interestingly, the City owns electricity production capacity within and beyond the city borders, but it doesn’t allocate it for itself. Allocation would significantly increase the control over the City’s own actions regarding carbon neutrality. Thus, it is proposed that cities aiming for carbon neutrality should promote and advance allocable carbon-free energy production, regardless of geographical location, as one of the central methods of achieving carbon neutrality.

Suggested Citation

  • Jani Laine & Jukka Heinonen & Seppo Junnila, 2020. "Pathways to Carbon-Neutral Cities Prior to a National Policy," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2445-:d:334917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han Vandevyvere & Sven Stremke, 2012. "Urban Planning for a Renewable Energy Future: Methodological Challenges and Opportunities from a Design Perspective," Sustainability, MDPI, vol. 4(6), pages 1-20, June.
    2. Sperling, Karl & Hvelplund, Frede & Mathiesen, Brian Vad, 2011. "Centralisation and decentralisation in strategic municipal energy planning in Denmark," Energy Policy, Elsevier, vol. 39(3), pages 1338-1351, March.
    3. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    4. Nilsson, J. Stenlund & Mårtensson, A., 2003. "Municipal energy-planning and development of local energy-systems," Applied Energy, Elsevier, vol. 76(1-3), pages 179-187, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yingying & Chen, Sha & Jiang, Kejun & Kaghembega, Wendkuuni Steve-Harold, 2022. "The gaps and pathways to carbon neutrality for different type cities in China," Energy, Elsevier, vol. 244(PA).
    2. Zhang, Leike & Tang, Hualin & Sun, Tao & Yu, Jianhui & Li, Zhenrong & Wang, Xueni, 2022. "Vibration characteristics analysis of shaft system for bulb hydroelectric generating unit based on magnetorheological fluid damper," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Cheng Zhou & Ruilian Zhang & Julia Loginova & Vigya Sharma & Zhonghua Zhang & Zaijian Qian, 2022. "Institutional Logic of Carbon Neutrality Policies in China: What Can We Learn?," Energies, MDPI, vol. 15(12), pages 1-16, June.
    4. Hongjiang Liu & Fengying Yan & Hua Tian, 2020. "A Vector Map of Carbon Emission Based on Point-Line-Area Carbon Emission Classified Allocation Method," Sustainability, MDPI, vol. 12(23), pages 1-21, December.
    5. Yang, Shu-Xia & Nie, Tian-qi & Li, Cheng-Cheng, 2022. "Research on the contribution of regional Energy Internet emission reduction considering time-of-use tariff," Energy, Elsevier, vol. 239(PB).
    6. Laura Lakanen & Heli Kumpulainen & Olli Helppi & Kaisa Grönman & Risto Soukka, 2022. "Carbon Handprint Approach for Cities and Regions: A Framework to Reveal and Assess the Potential of Cities in Climate Change Mitigation," Sustainability, MDPI, vol. 14(11), pages 1-14, May.
    7. Yuan Lai, 2022. "Urban Intelligence for Carbon Neutral Cities: Creating Synergy among Data, Analytics, and Climate Actions," Sustainability, MDPI, vol. 14(12), pages 1-14, June.
    8. Rui Liang & Xichuan Zheng & Jia Liang & Linhui Hu, 2023. "Energy Efficiency Model Construction of Building Carbon Neutrality Design," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    9. Woon, Kok Sin & Phuang, Zhen Xin & Taler, Jan & Varbanov, Petar Sabev & Chong, Cheng Tung & Klemeš, Jiří Jaromír & Lee, Chew Tin, 2023. "Recent advances in urban green energy development towards carbon emissions neutrality," Energy, Elsevier, vol. 267(C).
    10. Marta Bottero & Federico Dell’Anna & Vito Morgese, 2021. "Evaluating the Transition Towards Post-Carbon Cities: A Literature Review," Sustainability, MDPI, vol. 13(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sveinbjörnsson, Dadi & Ben Amer-Allam, Sara & Hansen, Anders Bavnhøj & Algren, Loui & Pedersen, Allan Schrøder, 2017. "Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality," Applied Energy, Elsevier, vol. 195(C), pages 922-941.
    2. Thellufsen, Jakob Zinck & Lund, Henrik, 2016. "Roles of local and national energy systems in the integration of renewable energy," Applied Energy, Elsevier, vol. 183(C), pages 419-429.
    3. Sperling, K. & Arler, F., 2020. "Local government innovation in the energy sector: A study of key actors’ strategies and arguments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    4. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    5. Hvelplund, Frede & Djørup, Søren, 2019. "Consumer ownership, natural monopolies and transition to 100% renewable energy systems," Energy, Elsevier, vol. 181(C), pages 440-449.
    6. Büchele, Richard & Kranzl, Lukas & Hummel, Marcus, 2019. "Integrated strategic heating and cooling planning on regional level for the case of Brasov," Energy, Elsevier, vol. 171(C), pages 475-484.
    7. Rasmus Magni Johannsen & Poul Alberg Østergaard & David Maya-Drysdale & Louise Krog Elmegaard Mouritsen, 2021. "Designing Tools for Energy System Scenario Making in Municipal Energy Planning," Energies, MDPI, vol. 14(5), pages 1-17, March.
    8. Najib Rahman Sabory & Tomonobu Senjyu & Mir Sayed Shah Danish & Mikaeel Ahmadi & Hameedullah Zaheb & Mustafa Halim, 2021. "A Framework for Integration of Smart and Sustainable Energy Systems in Urban Planning Processes of Low-Income Developing Countries: Afghanistan Case," Sustainability, MDPI, vol. 13(15), pages 1-24, July.
    9. McGookin, Connor & Ó Gallachóir, Brian & Byrne, Edmond, 2021. "An innovative approach for estimating energy demand and supply to inform local energy transitions," Energy, Elsevier, vol. 229(C).
    10. Bačeković, Ivan & Østergaard, Poul Alberg, 2018. "Local smart energy systems and cross-system integration," Energy, Elsevier, vol. 151(C), pages 812-825.
    11. Nielsen, Steffen & Østergaard, Poul Alberg & Sperling, Karl, 2023. "Renewable energy transition, transmission system impacts and regional development – a mismatch between national planning and local development," Energy, Elsevier, vol. 278(PA).
    12. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    13. Jani Laine & Juudit Ottelin & Jukka Heinonen & Seppo Junnila, 2017. "Consequential Implications of Municipal Energy System on City Carbon Footprints," Sustainability, MDPI, vol. 9(10), pages 1-14, October.
    14. Louise Krog & Karl Sperling & Henrik Lund, 2018. "Barriers and Recommendations to Innovative Ownership Models for Wind Power," Energies, MDPI, vol. 11(10), pages 1-16, September.
    15. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    16. Büchele, Richard & Kranzl, Lukas & Hummel, Marcus, 2018. "Integrated Strategic Heating and Cooling Planning on Regional Level for the case of Brasov," MPRA Paper 93235, University Library of Munich, Germany.
    17. Hvelplund, Frede & Østergaard, Poul Alberg & Meyer, Niels I., 2017. "Incentives and barriers for wind power expansion and system integration in Denmark," Energy Policy, Elsevier, vol. 107(C), pages 573-584.
    18. Frede Hvelplund & Søren Djørup, 2017. "Multilevel policies for radical transition: Governance for a 100% renewable energy system," Environment and Planning C, , vol. 35(7), pages 1218-1241, November.
    19. Hettinga, Sanne & Nijkamp, Peter & Scholten, Henk, 2018. "A multi-stakeholder decision support system for local neighbourhood energy planning," Energy Policy, Elsevier, vol. 116(C), pages 277-288.
    20. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.

    More about this item

    Keywords

    carbon neutral cities; greenhouse gas emissions; GHG Protocol; C40 Cities; sustainable built environment;
    All these keywords.

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2445-:d:334917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.