IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2180-d331383.html
   My bibliography  Save this article

A Multi-commodity Network Flow Model for Sustainable Performance Evaluation in City Logistics: Application to the Distribution of Multi-tenant Buildings in Tokyo

Author

Listed:
  • Rémy Dupas

    (IMS, University of Bordeaux, Bordeaux INP, CNRS (UMR 5218), Talence, France)

  • Eiichi Taniguchi

    (Resilience Research Unit, Kyoto University, 615-8520 Kyoto, Japan)

  • Jean-Christophe Deschamps

    (IMS, University of Bordeaux, Bordeaux INP, CNRS (UMR 5218), Talence, France)

  • Ali G. Qureshi

    (Department of Urban Management, Kyoto University, 615-8540 Kyoto, Japan)

Abstract

The distribution of goods in crowded city centers is a major challenge. In this paper, we propose a methodology for evaluating the performance of a parcel distribution network in city logistics. This methodology encompasses the main entities of a two-tier distribution system made up of carriers, huge shopping centers (multi-tenant buildings) and intermediate depots (urban consolidation centers), as well as the parcel flows between them. This methodology aims to optimize the transport flows (distance traveled) of a given distribution network while also quantifying the impact in terms of sustainable development by measuring gas emissions. Two different states of the network with different connectivity degrees are evaluated and compared: the current state of the network as well as its future state. The transport network modeling is based on a network flow, which is expressed in linear programming and implemented with an optimization solver. The validation of this methodology is based on the parcel distribution of the Multi-tenant Buildings of the city of Tokyo. The findings are that the network with greater connectivity between the entities brings significant traveled distance reduction as well as a reduction of emissions of CO2. Another finding is that the grouping of the parcels (i.e., pooling) brings a reduction of the distance traveled compared to the transport organization without grouping and contributes to a reduction in the number of trucks.

Suggested Citation

  • Rémy Dupas & Eiichi Taniguchi & Jean-Christophe Deschamps & Ali G. Qureshi, 2020. "A Multi-commodity Network Flow Model for Sustainable Performance Evaluation in City Logistics: Application to the Distribution of Multi-tenant Buildings in Tokyo," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2180-:d:331383
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eiichi Taniguchi & Rob E.C.M. Van Der Heijden, 2000. "An evaluation methodology for city logistics," Transport Reviews, Taylor & Francis Journals, vol. 20(1), pages 65-90, January.
    2. José Holguín-Veras & Gopal Patil, 2008. "A Multicommodity Integrated Freight Origin–destination Synthesis Model," Networks and Spatial Economics, Springer, vol. 8(2), pages 309-326, September.
    3. Browne, Michael & Woodburn, Allan & Allen, Julian, 2007. "Evaluating the potential for urban consolidation centres," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 35, pages 46-63.
    4. Julian Allen & Michael Browne & Allan Woodburn & Jacques Leonardi, 2012. "The Role of Urban Consolidation Centres in Sustainable Freight Transport," Transport Reviews, Taylor & Francis Journals, vol. 32(4), pages 473-490, April.
    5. Nilesh Anand & Ron van Duin & Hans Quak & Lori Tavasszy, 2015. "Relevance of City Logistics Modelling Efforts: A Review," Transport Reviews, Taylor & Francis Journals, vol. 35(6), pages 701-719, November.
    6. Cynthia Barnhart & Yosef Sheffi, 1993. "A Network-Based Primal-Dual Heuristic for the Solution of Multicommodity Network Flow Problems," Transportation Science, INFORMS, vol. 27(2), pages 102-117, May.
    7. Hezarkhani, Behzad & Slikker, Marco & Van Woensel, Tom, 2019. "Gain-sharing in urban consolidation centers," European Journal of Operational Research, Elsevier, vol. 279(2), pages 380-392.
    8. Firdausiyah, N. & Taniguchi, E. & Qureshi, A.G., 2019. "Modeling city logistics using adaptive dynamic programming based multi-agent simulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 74-96.
    9. Judith M. Farvolden & Warren B. Powell & Irvin J. Lustig, 1993. "A Primal Partitioning Solution for the Arc-Chain Formulation of a Multicommodity Network Flow Problem," Operations Research, INFORMS, vol. 41(4), pages 669-693, August.
    10. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    11. Cleophas, Catherine & Cottrill, Caitlin & Ehmke, Jan Fabian & Tierney, Kevin, 2019. "Collaborative urban transportation: Recent advances in theory and practice," European Journal of Operational Research, Elsevier, vol. 273(3), pages 801-816.
    12. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    13. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    14. Lei Yang & Yiji Cai & Jiahui Hong & Yongqiang Shi & Zhiyong Zhang, 2016. "Urban Distribution Mode Selection under Low Carbon Economy—A Case Study of Guangzhou City," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frazen Tolentino-Zondervan & Enide Bogers & Luc van de Sande, 2021. "A Managerial and Behavioral Approach in Aligning Stakeholder Goals in Sustainable Last Mile Logistics: A Case Study in the Netherlands," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Buldeo Rai, Heleen & Kang, Sanggyun & Sakai, Takanori & Tejada, Carla & Yuan, Quan (Jack) & Conway, Alison & Dablanc, Laetitia, 2022. "‘Proximity logistics’: Characterizing the development of logistics facilities in dense, mixed-use urban areas around the world," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 41-61.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. Francesco Ciardiello & Andrea Genovese & Shucheng Luo & Antonino Sgalambro, 2023. "A game-theoretic multi-stakeholder model for cost allocation in urban consolidation centres," Annals of Operations Research, Springer, vol. 324(1), pages 663-686, May.
    3. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    4. Daniele Crotti & Elena Maggi, 2023. "Social Responsibility and Urban Consolidation Centres in Sustainable Freight Transport Markets," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 9(2), pages 829-850, July.
    5. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    6. Garg, Manish & Smith, J. Cole, 2008. "Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios," Omega, Elsevier, vol. 36(6), pages 1057-1071, December.
    7. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.
    8. Shuangyan Li & Yijing Liang & Zhenjie Wang & Dezhi Zhang, 2021. "An Optimization Model of a Sustainable City Logistics Network Design Based on Goal Programming," Sustainability, MDPI, vol. 13(13), pages 1-20, July.
    9. Regal, Andrés & Gonzalez-Feliu, Jesús & Rodriguez, Michelle, 2023. "A spatio-functional logistics profile clustering analysis method for metropolitan areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    10. Rina R. Schneur & James B. Orlin, 1998. "A Scaling Algorithm for Multicommodity Flow Problems," Operations Research, INFORMS, vol. 46(2), pages 231-246, April.
    11. Hensher, David A. & Teye, Collins, 2019. "Commodity interaction in freight movement models for New South Wales," Journal of Transport Geography, Elsevier, vol. 80(C).
    12. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    13. Daniele Crotti & Elena Maggi, 2017. "Urban Distribution Centres and Competition among Logistics Providers: a Hotelling Approach," SAS: Society and Sustainability 256057, Fondazione Eni Enrico Mattei (FEEM).
    14. Rui Ren & Wanjie Hu & Jianjun Dong & Bo Sun & Yicun Chen & Zhilong Chen, 2019. "A Systematic Literature Review of Green and Sustainable Logistics: Bibliometric Analysis, Research Trend and Knowledge Taxonomy," IJERPH, MDPI, vol. 17(1), pages 1-25, December.
    15. Mepparambath, Rakhi Manohar & Cheah, Lynette & Courcoubetis, Costas, 2021. "A theoretical framework to evaluate the traffic impact of urban freight consolidation centres," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    16. Juliette Medina & Mike Hewitt & Fabien Lehuédé & Olivier Péton, 2019. "Integrating long-haul and local transportation planning: the Service Network Design and Routing Problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 119-145, June.
    17. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    18. Jamili, Negin & van den Berg, Pieter L. & de Koster, René, 2022. "Quantifying the impact of sharing resources in a collaborative warehouse," European Journal of Operational Research, Elsevier, vol. 302(2), pages 518-529.
    19. Qiyuan Deng & Xin Fang & Yun Fong Lim, 2021. "Urban Consolidation Center or Peer‐to‐Peer Platform? The Solution to Urban Last‐Mile Delivery," Production and Operations Management, Production and Operations Management Society, vol. 30(4), pages 997-1013, April.
    20. Bettinelli, Andrea & Cacchiani, Valentina & Crainic, Teodor Gabriel & Vigo, Daniele, 2019. "A Branch-and-Cut-and-Price algorithm for the Multi-trip Separate Pickup and Delivery Problem with Time Windows at Customers and Facilities," European Journal of Operational Research, Elsevier, vol. 279(3), pages 824-839.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2180-:d:331383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.