IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p664-d309492.html
   My bibliography  Save this article

Impact of Energy Landscapes on the Abundance of Eurasian Skylark ( Alauda arvensis ), an Example from North Germany

Author

Listed:
  • Nándor Csikós

    (Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem u. 2–6, H-6722 Szeged, Hungary)

  • Péter Szilassi

    (Department of Physical Geography and Geoinformatics, University of Szeged, Egyetem u. 2–6, H-6722 Szeged, Hungary)

Abstract

The increasing use of biomass for energy production is reshaping landscapes into energy landscapes. Our study aims to analyze the impact of the biogas energy landscape on the abundance of Eurasian skylark. The biogas power plants have a high impact on the landscape, because of the energy crops like silage maize and rape. We analyze land-use and land-cover heterogeneity in connection with this bird species in the Federal State of Schleswig-Holstein. Three databases are used: abundance data of a typical farmland bird (Eurasian skylark), Corine land cover, and statistical land-use data from the German Agricultural Structure Survey. Several spatial analyses and statistical analyses were conducted. Generalized linear models are used with model averaging and predicted marginal effects were calculated. We estimate the changes in individuals per km 2 by considering six crop types and the Shannon Diversity Index (SDI). The Eurasian skylark abundance has a significant negative correlation with the area of the inland wetlands, the Shannon Diversity Index (SDI), permanent crops, silage maize, and rape. We found significant positive correlation with the pasture, potato, and wheat. The replacement of pastures, Eurasian skylarks’ preferred habitat, with energy crops, mostly silage maize, and the ongoing homogenization of the landscape, negatively affected this species’ distribution in the study area.

Suggested Citation

  • Nándor Csikós & Péter Szilassi, 2020. "Impact of Energy Landscapes on the Abundance of Eurasian Skylark ( Alauda arvensis ), an Example from North Germany," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:664-:d:309492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. Michael Link & Christine Schleupner, 2007. "Agricultural land use changes in Eiderstedt," Working Papers FNU-137, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2007.
    2. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    3. Gao, Mingxue & Wang, Danmeng & Wang, Hui & Wang, Xiaojiao & Feng, Yongzhong, 2019. "Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 191-200.
    4. Christine Schleupner & P. Michael Link, 2007. "Potential impacts on important bird habitats in Eiderstedt (Schleswig-Holstein) caused by agricultural land use changes," Working Papers FNU-138, Research unit Sustainability and Global Change, Hamburg University, revised Jun 2007.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Csikós, Nándor & Tóth, Gergely, 2023. "Concepts of agricultural marginal lands and their utilisation: A review," Agricultural Systems, Elsevier, vol. 204(C).
    2. Alessandro Ferrarini & Enzo Calevi & Dina Brozzetti & Alessia Colle & Riccardo De Santis & Stefano Laurenti & Enzo Savo & Marco Gustin, 2023. "Optimized Monitoring and Conservation of Farmland Bird Species through Bayesian Modelling: The Montagu’s Harrier Circus pygargus Population in Central Italy," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    3. Nándor Csikós & Péter Szilassi, 2021. "Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark ( Alauda arvensis ) Based on Its Landscape Preferences," Land, MDPI, vol. 10(3), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    2. Luo, Tao & Khoshnevisan, Benyamin & Huang, Ruyi & Chen, Qiu & Mei, Zili & Pan, Junting & Liu, Hongbin, 2020. "Analysis of revolution in decentralized biogas facilities caused by transition in Chinese rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Su, Xing & Shao, Xiaolu & Geng, Yining & Tian, Shaochen & Huang, Yixiang, 2022. "Optimization of feedstock and insulating strategies to enhance biogas production of solar-assisted biodigester system," Renewable Energy, Elsevier, vol. 197(C), pages 59-68.
    7. Wang, Xuemei & Yan, Rui & Zhao, Yuying & Cheng, Shikun & Han, Yanzhao & Yang, Shuo & Cai, Di & Mang, Heinz-Peter & Li, Zifu, 2020. "Biogas standard system in China," Renewable Energy, Elsevier, vol. 157(C), pages 1265-1273.
    8. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    9. Xue, Shengrong & Zhang, Siqi & Wang, Ying & Wang, Yanbo & Song, Jinghui & Lyu, Xingang & Wang, Xiaojiao & Yang, Gaihe, 2022. "What can we learn from the experience of European countries in biomethane industry: Taking China as an example?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Xueqing Yang & Yang Liu & Mei Wang & Alberto Bezama & Daniela Thrän, 2021. "Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition," Land, MDPI, vol. 10(2), pages 1-20, February.
    11. Nuppenau, Ernst-August, 2010. "Environmental payments in conflicting situations between nature provision and cost minimization: a political economy approach," 118th Seminar, August 25-27, 2010, Ljubljana, Slovenia 95313, European Association of Agricultural Economists.
    12. Csikós, Nándor & Tóth, Gergely, 2023. "Concepts of agricultural marginal lands and their utilisation: A review," Agricultural Systems, Elsevier, vol. 204(C).
    13. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.
    14. Liting Xu & Sophia Shuang Chen & Yu Xu & Guangyu Li & Weizhong Su, 2019. "Impacts of Land-Use Change on Habitat Quality during 1985–2015 in the Taihu Lake Basin," Sustainability, MDPI, vol. 11(13), pages 1-21, June.
    15. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Marc Kalina & Jonathan Òlal Ogwang & Elizabeth Tilley, 2022. "From potential to practice: rethinking Africa’s biogas revolution," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-5, December.
    17. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    18. Yang, Luyao & Li, Xiujin & Yuan, Hairong & Yan, Beibei & Yang, Gaixiu & Lu, Yao & Li, Juan & Zuo, Xiaoyu, 2023. "Enhancement of biomethane production and decomposition of physicochemical structure of corn straw by combined freezing-thawing and potassium hydroxide pretreatment," Energy, Elsevier, vol. 268(C).
    19. Nándor Csikós & Péter Szilassi, 2021. "Modelling the Impacts of Habitat Changes on the Population Density of Eurasian Skylark ( Alauda arvensis ) Based on Its Landscape Preferences," Land, MDPI, vol. 10(3), pages 1-17, March.
    20. Yue, Qiong & Guo, Ping & Wu, Hui & Wang, Youzhi & Zhang, Chenglong, 2022. "Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty," Agricultural Systems, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:664-:d:309492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.