IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10494-d462469.html
   My bibliography  Save this article

Influence of the Composition on the Environmental Impact of a Casting Magnesium Alloy

Author

Listed:
  • Isabel García Gutiérrez

    (i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, María de Luna 3, 50018 Zaragoza, Spain)

  • Daniel Elduque

    (i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, María de Luna 3, 50018 Zaragoza, Spain)

  • Carmelo Pina

    (BSH Electrodomésticos España, S.A., Avda. de la Industria, 49, 50016 Zaragoza, Spain)

  • Rafael Tobajas

    (i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, María de Luna 3, 50018 Zaragoza, Spain)

  • Carlos Javierre

    (i+AITIIP, Department of Mechanical Engineering, University of Zaragoza EINA, María de Luna 3, 50018 Zaragoza, Spain)

Abstract

The influence of the composition of magnesium alloys on their environmental impact was analyzed. In order to perform a more accurate environmental impact calculation, life cycle assessment (LCA) with the ReCiPe 2016 Endpoint and IPCC 2013 GWP (100 y) methodology was used, taking the EcoInvent AZ91 magnesium alloy dataset as reference. This dataset has been updated with the material composition range of several alloys included in the European standard EN 1753:2019. The balanced, maximum, and minimum environmental impact values were obtained. In general, the overall impact of the studied magnesium alloys varied from 3.046 Pt/kg to 4.853 Pt/kg and from 43.439 kg CO 2 eq./kg to 55.427 kg CO 2 eq./kg, depending on the composition. In the analysis of maximum and minimum environmental impacts, the alloy that had the highest uncertainty was 3.5251, with a range of ±7.20%. The element that contributed the most to increase its impact was silver. The AZ91 alloy, provided by the EcoInvent dataset, had a lower environmental impact than all the magnesium alloys studied in this work. The content of critical raw materials (CRMs) was also assessed, showing a high content in CRMs, between 89.72% and 98.22%.

Suggested Citation

  • Isabel García Gutiérrez & Daniel Elduque & Carmelo Pina & Rafael Tobajas & Carlos Javierre, 2020. "Influence of the Composition on the Environmental Impact of a Casting Magnesium Alloy," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10494-:d:462469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando E. Garcia-Muiña & Rocío González-Sánchez & Anna Maria Ferrari & Lucrezia Volpi & Martina Pini & Cristina Siligardi & Davide Settembre-Blundo, 2019. "Identifying the Equilibrium Point between Sustainability Goals and Circular Economy Practices in an Industry 4.0 Manufacturing Context Using Eco-Design," Social Sciences, MDPI, vol. 8(8), pages 1-22, August.
    2. Anh-Duc Pham & Quang Trung Nguyen & Duc Long Luong & Quynh Chau Truong, 2020. "The Development of a Decision Support Model for Eco-Friendly Material Selection in Vietnam," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    3. Pazoki, Mostafa & Samarghandi, Hamed, 2020. "Take-back regulation: Remanufacturing or Eco-design?," International Journal of Production Economics, Elsevier, vol. 227(C).
    4. Daniela C. A. Pigosso & Mariana Ferraz & Cláudia Echevenguá Teixeira & Henrique Rozenfeld, 2016. "The Deployment of Product-Related Environmental Legislation into Product Requirements," Sustainability, MDPI, vol. 8(4), pages 1-15, April.
    5. Alberto Navajas & Leire Uriarte & Luis M. Gandía, 2017. "Application of Eco-Design and Life Cycle Assessment Standards for Environmental Impact Reduction of an Industrial Product," Sustainability, MDPI, vol. 9(10), pages 1-16, September.
    6. Ben G. Li & Yibei Liu, 2018. "The Production Life Cycle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(4), pages 1139-1170, October.
    7. Rizal Taufiq Fauzi & Patrick Lavoie & Luca Sorelli & Mohammad Davoud Heidari & Ben Amor, 2019. "Exploring the Current Challenges and Opportunities of Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    8. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    9. Jie Yang & Fu Gu & Jianfeng Guo & Bin Chen, 2019. "Comparative Life Cycle Assessment of Mobile Power Banks with Lithium-Ion Battery and Lithium-Ion Polymer Battery," Sustainability, MDPI, vol. 11(19), pages 1-24, September.
    10. Vincenzo Muteri & Maurizio Cellura & Domenico Curto & Vincenzo Franzitta & Sonia Longo & Marina Mistretta & Maria Laura Parisi, 2020. "Review on Life Cycle Assessment of Solar Photovoltaic Panels," Energies, MDPI, vol. 13(1), pages 1-38, January.
    11. Bogdan Branowski & Marek Zabłocki & Maciej Sydor, 2019. "The Material Indices Method in the Sustainable Engineering Design Process: A Review," Sustainability, MDPI, vol. 11(19), pages 1-16, October.
    12. Thi Thu Linh Hoang & Thi Gam Do & Van Thao Nguyen & Hoai Chau Nguyen & Hong Khoi Phan, 2020. "Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysa," Sustainability, MDPI, vol. 12(19), pages 1-9, September.
    13. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C., 2019. "Trade-offs between environmental and economic performance in production and inventory-routing problems," International Journal of Production Economics, Elsevier, vol. 217(C), pages 269-280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naglaa Fathy, 2023. "Interfacial Microstructure and Shear Strength Improvements of Babbitt–Steel Bimetal Composites Using Sn–Bi Interlayer via Liquid–Solid Casting," Sustainability, MDPI, vol. 15(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Vacchi & Cristina Siligardi & Erika Iveth Cedillo-González & Anna Maria Ferrari & Davide Settembre-Blundo, 2021. "Industry 4.0 and Smart Data as Enablers of the Circular Economy in Manufacturing: Product Re-Engineering with Circular Eco-Design," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    2. Sasha Shahbazi & Kerstin Johansen & Erik Sundin, 2021. "Product Design for Automated Remanufacturing—A Case Study of Electric and Electronic Equipment in Sweden," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    3. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    4. Gemina Quest & Rosalie Arendt & Christian Klemm & Vanessa Bach & Janik Budde & Peter Vennemann & Matthias Finkbeiner, 2022. "Integrated Life Cycle Assessment (LCA) of Power and Heat Supply for a Neighborhood: A Case Study of Herne, Germany," Energies, MDPI, vol. 15(16), pages 1-21, August.
    5. Juan Manuel Madrid-Solórzano & Jorge Luis García-Alcaraz & Eduardo Martínez Cámara & Julio Blanco Fernández & Emilio Jiménez Macías, 2022. "Sustainable Industrial Sotol Production in Mexico—A Life Cycle Assessment," Agriculture, MDPI, vol. 12(12), pages 1-12, December.
    6. Hrabec, Dušan & Hvattum, Lars Magnus & Hoff, Arild, 2022. "The value of integrated planning for production, inventory, and routing decisions: A systematic review and meta-analysis," International Journal of Production Economics, Elsevier, vol. 248(C).
    7. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    8. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    9. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    10. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    11. Ledgard, Stewart F. & Wei, Sha & Wang, Xiaoqin & Falconer, Shelley & Zhang, Nannan & Zhang, Xiying & Ma, Lin, 2019. "Nitrogen and carbon footprints of dairy farm systems in China and New Zealand, as influenced by productivity, feed sources and mitigations," Agricultural Water Management, Elsevier, vol. 213(C), pages 155-163.
    12. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    13. Li, Jiaxuan & Zhu, Xun & Djilali, Ned & Yang, Yang & Ye, Dingding & Chen, Rong & Liao, Qiang, 2022. "Comparative well-to-pump assessment of fueling pathways for zero-carbon transportation in China: Hydrogen economy or methanol economy?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    14. Coelho, Leandro Callegari & De Maio, Annarita & Laganà, Demetrio, 2020. "A variable MIP neighborhood descent for the multi-attribute inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    15. Stefano Poponi & Andrea Colantoni & Sirio R.S. Cividino & Enrico Maria Mosconi, 2019. "The Stakeholders’ Perspective within the B Corp Certification for a Circular Approach," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    16. Haneen Abuzaid & Fatin Samara, 2022. "Environmental and Economic Impact Assessments of a Photovoltaic Rooftop System in the United Arab Emirates," Energies, MDPI, vol. 15(22), pages 1-27, November.
    17. Fabio De Felice & Antonella Petrillo, 2021. "Green Transition: The Frontier of the Digicircular Economy Evidenced from a Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, October.
    18. Tatbita Titin Suhariyanto & Dzuraidah Abd Wahab & Mohd Nizam Ab Rahman, 2018. "Product Design Evaluation Using Life Cycle Assessment and Design for Assembly: A Case Study of a Water Leakage Alarm," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    19. Byung-Ju Jeon & Byung-Soo Kim, 2021. "Development of Material Combination Model Considering Economics and Construction Efficiency for G-SEED Certification," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    20. Ester Foppa Pedretti & Kofi Armah Boakye-Yiadom & Elena Valentini & Alessio Ilari & Daniele Duca, 2021. "Life Cycle Assessment of Spinach Produced in Central and Southern Italy," Sustainability, MDPI, vol. 13(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10494-:d:462469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.