IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6178-d392614.html
   My bibliography  Save this article

Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain

Author

Listed:
  • Zemin Zhang

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Changhe Lu

    (Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The production gap of soybean ( Glycine max L. Merr.) has been expanding in China recently, due to the increasing demand and decreasing production. Identifying soybean production dynamics is contributable to appropriate adjustment of crop rotation system and efficient use of agricultural resources—and thus to ensure food security. Taking the North China plain (NCP) as a case area, this study first analyzed the spatiotemporal dynamics of soybean production during 1998–2015 based on the spatial autocorrelation method, and then calculated contributions to the total production by yield and sown area using the factor decomposition method. The results indicated that total soybean production in the NCP decreased dramatically from 1998 to 2015 and showed a decreasing trend in 80.4% (263) of the counties, mainly (83.9%) contributed by the shrinkage of sown area, largely caused by decreasing benefit. Two regions were found with significantly spatial clustering degree of soybean production. In the south part of NCP, soybean production was highly clustered in Anhui province, and in north it was mainly clustered in western Hebei plain. It was found that soybean production in the NCP was rather sensitive to the return gaps of soybean from maize ( Zea mays L. ). These imply that the reduced area of soybean production can be restored if the return is improved by adopting appropriate policies such as appropriate subsidies. These findings could be helpful for the policymakers to make soybean production planning in the NCP, contributing to the national revitalization strategy of soybean production.

Suggested Citation

  • Zemin Zhang & Changhe Lu, 2020. "Clustering Analysis of Soybean Production to Understand its Spatiotemporal Dynamics in the North China Plain," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6178-:d:392614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6178/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6178/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donfouet, Hermann Pythagore Pierre & Barczak, Aleksandra & Détang-Dessendre, Cécile & Maigné, Elise, 2017. "Crop Production and Crop Diversity in France: A Spatial Analysis," Ecological Economics, Elsevier, vol. 134(C), pages 29-39.
    2. Wu, Dong & Fang, Shibo & Li, Xuan & He, Di & Zhu, Yongchao & Yang, Zaiqiang & Xu, Jiaxin & Wu, Yingjie, 2019. "Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain," Agricultural Water Management, Elsevier, vol. 214(C), pages 78-86.
    3. Rebecca Lima Albuquerque Maranhão & Osmar Abílio de Carvalho Júnior & Potira Meirelles Hermuche & Roberto Arnaldo Trancoso Gomes & Concepta Margaret McManus Pimentel & Renato Fontes Guimarães, 2019. "The Spatiotemporal Dynamics of Soybean and Cattle Production in Brazil," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
    4. Cho, Seong-Hoon & Newman, David H., 2005. "Spatial analysis of rural land development," Forest Policy and Economics, Elsevier, vol. 7(5), pages 732-744, August.
    5. Sheng, Yu & Song, Ligang, 2019. "Agricultural production and food consumption in China: A long-term projection," China Economic Review, Elsevier, vol. 53(C), pages 15-29.
    6. Ying Liu & Chenggang Wang & Zeng Tang & Zhibiao Nan, 2017. "Farmland Rental and Productivity of Wheat and Maize: An Empirical Study in Gansu, China," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    7. Yuanyuan Chen & Changhe Lu, 2018. "A Comparative Analysis on Food Security in Bangladesh, India and Myanmar," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    8. Wang, Jieyong & Zhang, Ziwen & Liu, Yansui, 2018. "Spatial shifts in grain production increases in China and implications for food security," Land Use Policy, Elsevier, vol. 74(C), pages 204-213.
    9. Lin Sun & Mingxian Qi & Michael R. Reed, 2018. "The effects of soybean trade policies on domestic soybean market in China during the food crisis," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(3), pages 372-385, July.
    10. Yinhao Wu & Enru Wang & Changhong Miao, 2019. "Fertilizer Use in China: The Role of Agricultural Support Policies," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    11. Dong, Wanlu & Wang, Xiaobing & Yang, Jun, 2015. "Future Perspective of China's Feed Demand and Supply During its Fast Transition Period of Food Consumption," 2015 Conference, August 9-14, 2015, Milan, Italy 212716, International Association of Agricultural Economists.
    12. Zemin Zhang & Changhe Lu, 2019. "Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shwu-Pyng Joanna Chen & Man-Wah Li & Ho-Yan Wong & Fuk-Ling Wong & Tingting Wu & Junyi Gai & Tianfu Han & Hon-Ming Lam, 2022. "The Seed Quality Assurance Regulations and Certification System in Soybean Production—A Chinese and International Perspective," Agriculture, MDPI, vol. 12(5), pages 1-14, April.
    2. Huanhuan Peng & Jinran Xiong & Jiayi Zhang & Linghui Zhu & Guiyan Wang & Steven Pacenka & Xiaolin Yang, 2023. "Water Requirements and Comprehensive Benefit Evaluation of Diversified Crop Rotations in the Huang-Huai Plain," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    3. Wenguang Chen & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Yubo Liao & Lingxin Kong, 2022. "Soybean Production and Spatial Agglomeration in China from 1949 to 2019," Land, MDPI, vol. 11(5), pages 1-17, May.
    4. Ruly Krisdiana & Nila Prasetiaswati & Imam Sutrisno & Fachrur Rozi & Arief Harsono & Made Jana Mejaya, 2021. "Financial Feasibility and Competitiveness Levels of Soybean Varieties in Rice-Based Cropping System of Indonesia," Sustainability, MDPI, vol. 13(15), pages 1-12, July.
    5. Yaqun Liu & Changhe Lu, 2021. "Quantifying Grass Coverage Trends to Identify the Hot Plots of Grassland Degradation in the Tibetan Plateau during 2000–2019," IJERPH, MDPI, vol. 18(2), pages 1-18, January.
    6. Tao Pan & Ru Zhang, 2022. "Spatiotemporal Heterogeneity Monitoring of Cropland Evolution and Its Impact on Grain Production Changes in the Southern Sanjiang Plain of Northeast China," Land, MDPI, vol. 11(8), pages 1-18, July.
    7. Huaquan Zhang & Abbas Ali Chandio & Fan Yang & Yashuang Tang & Martinson Ankrah Twumasi & Ghulam Raza Sargani, 2022. "Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China," IJERPH, MDPI, vol. 19(9), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Zhang & Changhe Lu, 2019. "Spatio-Temporal Pattern Change of Winter Wheat Production and Its Implications in the North China Plain," Sustainability, MDPI, vol. 11(11), pages 1-14, May.
    2. Yuanyuan Chen & Changhe Lu, 2019. "Future Grain Consumption Trends and Implications on Grain Security in China," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    3. Taiyang Zhong & Zhenzhong Si & Steffanie Scott & Jonathan Crush & Kui Yang & Xianjin Huang, 2021. "Comprehensive Food System Planning for Urban Food Security in Nanjing, China," Land, MDPI, vol. 10(10), pages 1-17, October.
    4. Araújo, Mayara Lucyanne Santos de & Sano, Edson Eyji & Bolfe, Édson Luis & Santos, Jessflan Rafael Nascimento & dos Santos, Juliana Sales & Silva, Fabrício Brito, 2019. "Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015)," Land Use Policy, Elsevier, vol. 80(C), pages 57-67.
    5. Shukun Wang & Changquan Liu & Lei Han & Tingting Li & Guolei Yang & Taofeng Chen, 2022. "Corn Grain or Corn Silage: Effects of the Grain-to-Fodder Crop Conversion Program on Farmers’ Income in China," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    6. Cho, Seong-Hoon & Kim, Heeho & Roberts, Roland K. & Kim, Taeyoung & Lee, Daegoon, 2014. "Effects of changes in forestland ownership on deforestation and urbanization and the resulting effects on greenhouse gas emissions," Journal of Forest Economics, Elsevier, vol. 20(1), pages 93-109.
    7. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    8. Shixiong Song & Siyuan Zhao & Ye Zhang & Yongxi Ma, 2023. "Carbon Emissions from Agricultural Inputs in China over the Past Three Decades," Agriculture, MDPI, vol. 13(5), pages 1-12, April.
    9. Cao, Jianjun & Wei, Chen & Adamowski, Jan F. & Zhou, Junju & Liu, Chunfang & Zhu, Guofeng & Dong, Xiaogang & Zhang, Xiaofang & Zhao, Huijun & Feng, Qi, 2020. "Could arid and semi-arid abandoned lands prove ecologically or economically valuable if they afford greater soil organic carbon storage than afforested lands in China’s Loess Plateau?," Land Use Policy, Elsevier, vol. 99(C).
    10. Cho, Seong-Hoon & Soh, Moonwon & English, Burton C. & Yu, T. Edward & Boyer, Christopher N., 2019. "Targeting payments for forest carbon sequestration given ecological and economic objectives," Forest Policy and Economics, Elsevier, vol. 100(C), pages 214-226.
    11. Yu, Zhenning & She, Shuoqi & Xia, Chuyu & Luo, Jiaojiao, 2023. "How to solve the dilemma of China’s land fallow policy: Application of voluntary bidding mode in the Yangtze River Delta of China," Land Use Policy, Elsevier, vol. 125(C).
    12. Md Monjurul Islam & Tofael Ahamed & Ryozo Noguchi, 2018. "Land Suitability and Insurance Premiums: A GIS-based Multicriteria Analysis Approach for Sustainable Rice Production," Sustainability, MDPI, vol. 10(6), pages 1-28, May.
    13. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    14. Liu, Yansui & Zhou, Yang, 2021. "Reflections on China's food security and land use policy under rapid urbanization," Land Use Policy, Elsevier, vol. 109(C).
    15. Chen, Xin & Jiang, Li & Zhang, Guoliang & Meng, Lijun & Pan, Zhihua & Lun, Fei & An, Pingli, 2021. "Green-depressing cropping system: A referential land use practice for fallow to ensure a harmonious human-land relationship in the farming-pastoral ecotone of northern China," Land Use Policy, Elsevier, vol. 100(C).
    16. Rachit Saxena & Sai Kranthi Vanga & Jin Wang & Valérie Orsat & Vijaya Raghavan, 2018. "Millets for Food Security in the Context of Climate Change: A Review," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    17. Huaquan Zhang & Abbas Ali Chandio & Fan Yang & Yashuang Tang & Martinson Ankrah Twumasi & Ghulam Raza Sargani, 2022. "Modeling the Impact of Climatological Factors and Technological Revolution on Soybean Yield: Evidence from 13-Major Provinces of China," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
    18. Li, Xiaoliang & Wu, Kening & Yang, Qijun & Hao, Shiheng & Feng, Zhe & Ma, Jinliang, 2023. "Quantitative assessment of cultivated land use intensity in Heilongjiang Province, China, 2001–2015," Land Use Policy, Elsevier, vol. 125(C).
    19. Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
    20. Leila Dal Moro & Laércio Stolfo Maculan & Dieisson Pivoto & Grace Tibério Cardoso & Diana Pinto & Bashir Adelodun & Brian William Bodah & M. Santosh & Marluse Guedes Bortoluzzi & Elisiane Branco & Alc, 2022. "Geospatial Analysis with Landsat Series and Sentinel-3B OLCI Satellites to Assess Changes in Land Use and Water Quality over Time in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6178-:d:392614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.