IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6082-d391290.html
   My bibliography  Save this article

Analysing Green Forward–Reverse Logistics with NSGA-II

Author

Listed:
  • Wei Sun

    (School of Economics & Management, Harbin Engineering University, Harbin 150001, China
    College of Mathematical Sciences, Harbin Engineering University, Harbin 150001, China)

  • Yi Su

    (School of Economics & Management, Harbin Engineering University, Harbin 150001, China)

Abstract

To increase revenue while being aware of environmental responsibility and uncertain demand, green forward–reverse logistics is an important part of research on supply chain management. This work seeks the optimal strategies for applying green forward–reverse logistics. A multi-product, multi-stage and multi-objective model is constructed of green forward–reverse logistics considering shortage costs and uncertain demand, which exist in reality. The aims of the proposed mathematical model are to maximize total revenue and minimize cost and environmental pollution. Two different sizes of forward–reverse logistics are discussed. The NSGA-II method is used to obtain the Pareto solutions of the mathematical model. The numerical results indicate that greater revenue can bring greater cost and environmental pollution in total. Considering the pollution problem, small firms have greater revenue-cost rates and lower cost-pollution rates. These results could help managers make more effective suggestions in production.

Suggested Citation

  • Wei Sun & Yi Su, 2020. "Analysing Green Forward–Reverse Logistics with NSGA-II," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6082-:d:391290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Jen-Ming & Chang, Chia-I, 2013. "Dynamic pricing for new and remanufactured products in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 146(1), pages 153-160.
    2. Zhang, Linghong & Wang, Jingguo & You, Jianxin, 2015. "Consumer environmental awareness and channel coordination with two substitutable products," European Journal of Operational Research, Elsevier, vol. 241(1), pages 63-73.
    3. Sharma, Amalesh & Adhikary, Anirban & Borah, Sourav Bikash, 2020. "Covid-19′s impact on supply chain decisions: Strategic insights from NASDAQ 100 firms using Twitter data," Journal of Business Research, Elsevier, vol. 117(C), pages 443-449.
    4. Geraldo Ferrer & Jayashankar M. Swaminathan, 2006. "Managing New and Remanufactured Products," Management Science, INFORMS, vol. 52(1), pages 15-26, January.
    5. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    6. Yi Su & Tianchi Li, 2020. "Simulation Analysis of Knowledge Transfer in a Knowledge Alliance Based on a Circular Surface Radiator Model," Complexity, Hindawi, vol. 2020, pages 1-27, May.
    7. Jiafu Su & Chi Li & Qingjun Zeng & Jiaquan Yang & Jie Zhang, 2019. "A Green Closed-Loop Supply Chain Coordination Mechanism Based on Third-Party Recycling," Sustainability, MDPI, vol. 11(19), pages 1-14, September.
    8. V. Daniel R. Guide & Luk N. Van Wassenhove, 2009. "OR FORUM---The Evolution of Closed-Loop Supply Chain Research," Operations Research, INFORMS, vol. 57(1), pages 10-18, February.
    9. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    10. Giannoccaro, Ilaria & Pontrandolfo, Pierpaolo & Scozzi, Barbara, 2003. "A fuzzy echelon approach for inventory management in supply chains," European Journal of Operational Research, Elsevier, vol. 149(1), pages 185-196, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shouxu Song & Yongting Tian & Dan Zhou, 2021. "Reverse Logistics Network Design and Simulation for Automatic Teller Machines Based on Carbon Emission and Economic Benefits: A Study of the Anhui Province ATMs Industry," Sustainability, MDPI, vol. 13(20), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maiti, T. & Giri, B.C., 2017. "Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 259-272.
    2. Gan, Shu-San & Pujawan, I Nyoman & Suparno, & Widodo, Basuki, 2018. "Pricing decisions for short life-cycle product in a closed-loop supply chain with random yield and random demands," Operations Research Perspectives, Elsevier, vol. 5(C), pages 174-190.
    3. Xu, Xun & Zeng, Shuo & He, Yuanjie, 2017. "The influence of e-services on customer online purchasing behavior toward remanufactured products," International Journal of Production Economics, Elsevier, vol. 187(C), pages 113-125.
    4. Liu, Wenjie & Liu, Wei & Shen, Ningning & Xu, Zhitao & Xie, Naiming & Chen, Jian & Zhou, Huiyu, 2022. "Pricing and collection decisions of a closed-loop supply chain with fuzzy demand," International Journal of Production Economics, Elsevier, vol. 245(C).
    5. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    6. Chang, Xiangyun & Xia, Haiyang & Zhu, Huiyun & Fan, Tijun & Zhao, Hongqing, 2015. "Production decisions in a hybrid manufacturing–remanufacturing system with carbon cap and trade mechanism," International Journal of Production Economics, Elsevier, vol. 162(C), pages 160-173.
    7. Kyung Sung Jung & Milind Dawande & H. Neil Geismar & V. Daniel R. Guide & Chelliah Sriskandarajah, 2016. "Supply planning models for a remanufacturer under just-in-time manufacturing environment with reverse logistics," Annals of Operations Research, Springer, vol. 240(2), pages 533-581, May.
    8. Tianqin Shi & Dilip Chhajed & Zhixi Wan & Yunchuan Liu, 2020. "Distribution Channel Choice and Divisional Conflict in Remanufacturing Operations," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1702-1719, July.
    9. Bianco, Débora & Bueno, Adauto & Godinho Filho, Moacir & Latan, Hengky & Miller Devós Ganga, Gilberto & Frank, Alejandro G. & Chiappetta Jabbour, Charbel Jose, 2023. "The role of Industry 4.0 in developing resilience for manufacturing companies during COVID-19," International Journal of Production Economics, Elsevier, vol. 256(C).
    10. Li, Gendao & Reimann, Marc & Zhang, Weihua, 2018. "When remanufacturing meets product quality improvement: The impact of production cost," European Journal of Operational Research, Elsevier, vol. 271(3), pages 913-925.
    11. Weisheng Deng, 2019. "Does Remanufacturing Always Benefit the Manufacturer and Hurt the Supplier?," Sustainability, MDPI, vol. 11(6), pages 1-13, March.
    12. Pietro Giovanni, 2017. "Closed-loop supply chain coordination through incentives with asymmetric information," Annals of Operations Research, Springer, vol. 253(1), pages 133-167, June.
    13. Borenich, Andrea & Dickbauer, Yanick & Reimann, Marc & Souza, Gilvan C., 2020. "Should a manufacturer sell refurbished returns on the secondary market to incentivize retailers to reduce consumer returns?," European Journal of Operational Research, Elsevier, vol. 282(2), pages 569-579.
    14. Gan, Shu-San & Pujawan, I. Nyoman & Suparno, & Widodo, Basuki, 2017. "Pricing decision for new and remanufactured product in a closed-loop supply chain with separate sales-channel," International Journal of Production Economics, Elsevier, vol. 190(C), pages 120-132.
    15. Ze-Bin Wang & Yao-Yu Wang & Jian-Cai Wang, 2016. "Optimal distribution channel strategy for new and remanufactured products," Electronic Commerce Research, Springer, vol. 16(2), pages 269-295, June.
    16. Zheng, Xiong & Govindan, Kannan & Deng, Qianzhou & Feng, Lipan, 2019. "Effects of design for the environment on firms’ production and remanufacturing strategies," International Journal of Production Economics, Elsevier, vol. 213(C), pages 217-228.
    17. Lili Dai & Tong Shu & Shou Chen & Shouyang Wang & Kin Keung Lai, 2020. "CSR Remanufacturing Supply Chains under WTP Differentiation," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    18. Genc, Talat S. & Giovanni, Pietro De, 2017. "Trade-in and save: A two-period closed-loop supply chain game with price and technology dependent returns," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 514-527.
    19. Vishal V. Agrawal & Atalay Atasu & Koert van Ittersum, 2015. "Remanufacturing, Third-Party Competition, and Consumers' Perceived Value of New Products," Management Science, INFORMS, vol. 61(1), pages 60-72, January.
    20. Ghosh, Debabrata & Gouda, Sirish & Shankar, Ravi & Swami, Sanjeev & Thomas, Vinu Cheruvil, 2018. "Strategic decision making under subscription-based contracts for remanufacturing," International Journal of Production Economics, Elsevier, vol. 200(C), pages 134-150.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6082-:d:391290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.