IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4636-d367982.html
   My bibliography  Save this article

Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay

Author

Listed:
  • Lucía Pereira-Ruchansky

    (Department of Building Science, University of Bio-Bio, Concepción 4030000, Chile
    Climate and Comfort Area, Faculty of Architecture, Design and Urbanism, University of the Republic, Montevideo 11200, Uruguay)

  • Alexis Pérez-Fargallo

    (Department of Building Science, University of Bio-Bio, Concepción 4030000, Chile
    TEP198: Materials and construction, University of Sevilla, 41012 Sevilla, Spain)

Abstract

Energy improvement studies normally use energy demand reduction as an indicator, disregarding dwellings that do not use air-conditioning systems or do so only under extreme weather conditions. They also do not quantify the impact of climate change on results. This research seeks to evaluate and prioritize energy improvements for existing Uruguayan dwellings, assessing energy demand and thermal comfort in both the current and future climate. A social dwelling was monitored and calibrated to assess energy efficiency measures simulating the current climate and for 2050 (IPCC Scenario A2). The results show that improvements must be linked to the use of air-conditioning in dwellings. When air-conditioning use is unknown, for example, in public policy, thermal transmittance in walls should be between 0.50–0.61 W/m 2 K, in roofs between 0.32–0.47 W/m 2 K, in openings 2.7 W/m 2 K, airtightness under 5 ACH n50 and with solar protections. However, when the use under free running is certain, thermal transmittance in walls and roofs should be 0.85 W/m 2 K with an airtightness of 9.2 ACH n50 and solar protection used to avoid overheating. The operational ventilation and solar protection parameters were helpful to guarantee comfort, underlining the need for their inclusion and to train those who use them.

Suggested Citation

  • Lucía Pereira-Ruchansky & Alexis Pérez-Fargallo, 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4636-:d:367982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    2. Rocío Escandón & Rafael Suárez & Juan José Sendra & Fabrizio Ascione & Nicola Bianco & Gerardo Maria Mauro, 2019. "Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain," Energies, MDPI, vol. 12(12), pages 1-21, June.
    3. Thomson, Harriet & Snell, Carolyn, 2013. "Quantifying the prevalence of fuel poverty across the European Union," Energy Policy, Elsevier, vol. 52(C), pages 563-572.
    4. Rubio-Bellido, Carlos & Pérez-Fargallo, Alexis & Pulido-Arcas, Jesús A., 2016. "Optimization of annual energy demand in office buildings under the influence of climate change in Chile," Energy, Elsevier, vol. 114(C), pages 569-585.
    5. Chorpech Panraluk & Atch Sreshthaputra, 2019. "Developing Guidelines for Thermal Comfort and Energy Saving during Hot Season of Multipurpose Senior Centers in Thailand," Sustainability, MDPI, vol. 12(1), pages 1-27, December.
    6. van Hooff, T. & Blocken, B. & Timmermans, H.J.P. & Hensen, J.L.M., 2016. "Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building," Energy, Elsevier, vol. 94(C), pages 811-820.
    7. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    8. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    9. Alexis Pérez-Fargallo & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Inmaculada Gallego-Maya & Fco. Javier Guevara-García, 2018. "Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    10. Peacock, A.D. & Jenkins, D.P. & Kane, D., 2010. "Investigating the potential of overheating in UK dwellings as a consequence of extant climate change," Energy Policy, Elsevier, vol. 38(7), pages 3277-3288, July.
    11. Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A. & Javier Guevara-García, Fco., 2018. "Fuel Poverty Potential Risk Index in the context of climate change in Chile," Energy Policy, Elsevier, vol. 113(C), pages 157-170.
    12. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Francesca De Masi & Valentino Festa & Antonio Gigante & Margherita Mastellone & Silvia Ruggiero & Giuseppe Peter Vanoli, 2021. "Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House," Sustainability, MDPI, vol. 13(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingjun Hao & Daniel Herrera-Avellanosa & Claudio Del Pero & Alexandra Troi, 2020. "What Are the Implications of Climate Change for Retrofitted Historic Buildings? A Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    2. Pino-Mejías, Rafael & Pérez-Fargallo, Alexis & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2018. "Artificial neural networks and linear regression prediction models for social housing allocation: Fuel Poverty Potential Risk Index," Energy, Elsevier, vol. 164(C), pages 627-641.
    3. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    4. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    5. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Phoumin, Han & Kimura, Fukunari, 2019. "Cambodia's energy poverty and its effects on social wellbeing: Empirical evidence and policy implications," Energy Policy, Elsevier, vol. 132(C), pages 283-289.
    7. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    8. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    9. Bienvenido-Huertas, David & Rubio-Bellido, Carlos & Solís-Guzmán, Jaime & Oliveira, Miguel José, 2020. "Experimental characterisation of the periodic thermal properties of walls using artificial intelligence," Energy, Elsevier, vol. 203(C).
    10. Rodrigues, Eugénio & Fernandes, Marco S., 2020. "Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios," Applied Energy, Elsevier, vol. 259(C).
    11. David Bienvenido-Huertas & Jesús A. Pulido-Arcas & Carlos Rubio-Bellido & Alexis Pérez-Fargallo, 2021. "Prediction of Fuel Poverty Potential Risk Index Using Six Regression Algorithms: A Case-Study of Chilean Social Dwellings," Sustainability, MDPI, vol. 13(5), pages 1-30, February.
    12. Charlier, Dorothée & Legendre, Bérangère, 2021. "Fuel poverty in industrialized countries: Definition, measures and policy implications a review," Energy, Elsevier, vol. 236(C).
    13. Samuelson, Holly W. & Baniassadi, Amir & Gonzalez, Pablo Izaga, 2020. "Beyond energy savings: Investigating the co-benefits of heat resilient architecture," Energy, Elsevier, vol. 204(C).
    14. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    15. Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    16. Staszczuk, A. & Kuczyński, T., 2019. "The impact of floor thermal capacity on air temperature and energy consumption in buildings in temperate climate," Energy, Elsevier, vol. 181(C), pages 908-915.
    17. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2021. "Applying the mixed-mode with an adaptive approach to reduce the energy poverty in social dwellings: The case of Spain," Energy, Elsevier, vol. 237(C).
    18. Mata, Érika & Wanemark, Joel & Nik, Vahid M. & Sasic Kalagasidis, Angela, 2019. "Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities," Applied Energy, Elsevier, vol. 242(C), pages 1022-1035.
    19. Alexis Pérez-Fargallo & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Inmaculada Gallego-Maya & Fco. Javier Guevara-García, 2018. "Influence of Adaptive Comfort Models on Energy Improvement for Housing in Cold Areas," Sustainability, MDPI, vol. 10(3), pages 1-15, March.
    20. Galatioto, A. & Ciulla, G. & Ricciu, R., 2017. "An overview of energy retrofit actions feasibility on Italian historical buildings," Energy, Elsevier, vol. 137(C), pages 991-1000.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4636-:d:367982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.