IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4611-d367567.html
   My bibliography  Save this article

Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia

Author

Listed:
  • Nikolaos-Fivos Galatoulas

    (Department of Thermodynamics and Mathematical Physics, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
    European Research Area Chair (*Holder) ‘Net-Zero Energy Efficiency on City Districts, NZED’ Unit, Research Institute for Energy, University of Mons, Rue de l’Epargne, 56, 7000 Mons, Belgium)

  • Konstantinos N. Genikomsakis

    (European Research Area Chair (*Holder) ‘Net-Zero Energy Efficiency on City Districts, NZED’ Unit, Research Institute for Energy, University of Mons, Rue de l’Epargne, 56, 7000 Mons, Belgium
    Inteligg P.C., Karaiskaki 28, 10554 Athens, Greece)

  • Christos S. Ioakimidis

    (European Research Area Chair (*Holder) ‘Net-Zero Energy Efficiency on City Districts, NZED’ Unit, Research Institute for Energy, University of Mons, Rue de l’Epargne, 56, 7000 Mons, Belgium
    Inteligg P.C., Karaiskaki 28, 10554 Athens, Greece)

Abstract

Recent data on conventional bike and/or electric bike (e-bike) sharing systems reveal that more than 2900 systems are operating in cities worldwide, indicating the increased adoption of this alternative mode of transportation. Addressing the existing gap in the literature regarding the deployment of e-bike sharing systems (e-BSSs) in particular, this paper reviews their spatio-temporal characteristics, and attempts to (a) map the worldwide distribution of e-BSSs, (b) identify temporal trends in terms of annual growth/expansion of e-BSS deployment worldwide and (c) explore the spatial characteristics of the recorded growth, in terms of adoption on a country scale, population coverage and type of system/initial fleet sizes. To that end, it examines the patterns identified from the global to the country level, based on data collected from an online source of BSS information worldwide. A comparative analysis is performed with a focus on Europe, North America and Asia, providing insights on the growth rate of the specific bikesharing market segment. Although the dockless e-BSS has been only within three years of competition with station-based implementations, it shows a rapid integration to the overall technology diffusion trend, while it is more established in Asia and North America in comparison with Europe and launches with larger fleet sizes.

Suggested Citation

  • Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4611-:d:367567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Yan & Kun Gao & Lijun Sun & Minhua Shao, 2020. "Spatio-Temporal Usage Patterns of Dockless Bike-Sharing Service Linking to a Metro Station: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-14, January.
    2. Elliot Fishman, 2016. "Bikeshare: A Review of Recent Literature," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 92-113, January.
    3. McKenzie, Grant, 2019. "Spatiotemporal comparative analysis of scooter-share and bike-share usage patterns in Washington, D.C," Journal of Transport Geography, Elsevier, vol. 78(C), pages 19-28.
    4. Shaheen, Susan PhD & Cohen, Adam, 2019. "Shared Micromoblity Policy Toolkit: Docked and Dockless Bike and Scooter Sharing," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt00k897b5, Institute of Transportation Studies, UC Berkeley.
    5. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    6. Parkes, Stephen & Mardsen, Greg & Shaheen, Susan PhD & Cohen, Adam, 2013. "Understanding the Diffusion of Public Bikesharing Systems: Evidence from Europe and North America," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3qr9h2pr, Institute of Transportation Studies, UC Berkeley.
    7. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    8. Jana A. Hirsch & Joshua Stratton-Rayner & Meghan Winters & John Stehlin & Kate Hosford & Stephen J. Mooney, 2019. "Roadmap for free-floating bikeshare research and practice in North America," Transport Reviews, Taylor & Francis Journals, vol. 39(6), pages 706-732, November.
    9. Zijia Wang & Lei Cheng & Yongxing Li & Zhiqiang Li, 2020. "Spatiotemporal Characteristics of Bike-Sharing Usage around Rail Transit Stations: Evidence from Beijing, China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    10. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    11. O’Brien, Oliver & Cheshire, James & Batty, Michael, 2014. "Mining bicycle sharing data for generating insights into sustainable transport systems," Journal of Transport Geography, Elsevier, vol. 34(C), pages 262-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yixiao & Tian, Zihao & Pan, Baoran & Zhang, Wenbin & Liu, Yunqi & Tian, Lixin, 2022. "A hybrid big-data-based and tolerance-based method to estimate environmental benefits of electric bike sharing," Applied Energy, Elsevier, vol. 315(C).
    2. Franklin Oliveira & Dilan Nery & Daniel G. Costa & Ivanovitch Silva & Luciana Lima, 2021. "A Survey of Technologies and Recent Developments for Sustainable Smart Cycling," Sustainability, MDPI, vol. 13(6), pages 1-28, March.
    3. Zhang, Ziru & Krishnakumari, Panchamy & Schulte, Frederik & van Oort, Niels, 2023. "Improving the service of E-bike sharing by demand pattern analysis: A data-driven approach," Research in Transportation Economics, Elsevier, vol. 101(C).
    4. Tomasz Bieliński & Łukasz Dopierała & Maciej Tarkowski & Agnieszka Ważna, 2020. "Lessons from Implementing a Metropolitan Electric Bike Sharing System," Energies, MDPI, vol. 13(23), pages 1-21, November.
    5. Mohiuddin, Hossain & Fitch-Polse, Dillon T. & Handy, Susan L., 2023. "Does bike-share enhance transport equity? Evidence from the Sacramento, California region," Journal of Transport Geography, Elsevier, vol. 109(C).
    6. Lidong Zhu & Mujahid Ali & Elżbieta Macioszek & Mahdi Aghaabbasi & Amin Jan, 2022. "Approaching Sustainable Bike-Sharing Development: A Systematic Review of the Influence of Built Environment Features on Bike-Sharing Ridership," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    7. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    8. Ruiwei Li & Gobi Krishna Sinniah & Xiangyu Li, 2022. "The Factors Influencing Resident’s Intentions on E-Bike Sharing Usage in China," Sustainability, MDPI, vol. 14(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    2. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    3. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    4. Xavier Bach & Carme Miralles-Guasch & Oriol Marquet, 2023. "Spatial Inequalities in Access to Micromobility Services: An Analysis of Moped-Style Scooter Sharing Systems in Barcelona," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    5. Wang, Yacan & Douglas, Matthew & Hazen, Benjamin, 2021. "Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 1-13.
    6. Morton, Craig & Kelley, Scott & Monsuur, Fredrik & Hui, Tianwen, 2021. "A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London," Journal of Transport Geography, Elsevier, vol. 94(C).
    7. Arias-Molinares, Daniela & Romanillos, Gustavo & García-Palomares, Juan Carlos & Gutiérrez, Javier, 2021. "Exploring the spatio-temporal dynamics of moped-style scooter sharing services in urban areas," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Caulfield, Brian & O'Mahony, Margaret & Brazil, William & Weldon, Peter, 2017. "Examining usage patterns of a bike-sharing scheme in a medium sized city," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 152-161.
    9. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    10. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    11. Zhao, De & Ong, Ghim Ping, 2021. "Geo-fenced parking spaces identification for free-floating bicycle sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 49-63.
    12. Lazarus, Jessica & Pourquier, Jean Carpentier & Feng, Frank & Hammel, Henry & Shaheen, Susan, 2020. "Micromobility evolution and expansion: Understanding how docked and dockless bikesharing models complement and compete – A case study of San Francisco," Journal of Transport Geography, Elsevier, vol. 84(C).
    13. Raux, Charles & Zoubir, Ayman & Geyik, Mirkan, 2017. "Who are bike sharing schemes members and do they travel differently? The case of Lyon’s “Velo’v” scheme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 350-363.
    14. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    15. Wang, Mingshu & Zhou, Xiaolu, 2017. "Bike-sharing systems and congestion: Evidence from US cities," Journal of Transport Geography, Elsevier, vol. 65(C), pages 147-154.
    16. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    17. Hu, Songhua & Xiong, Chenfeng & Liu, Zhanqin & Zhang, Lei, 2021. "Examining spatiotemporal changing patterns of bike-sharing usage during COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 91(C).
    18. Shibayama, Takeru & Emberger, Günter, 2020. "New mobility services: Taxonomy, innovation and the role of ICTs," Transport Policy, Elsevier, vol. 98(C), pages 79-90.
    19. Biehl, Alec & Ermagun, Alireza & Stathopoulos, Amanda, 2019. "Utilizing multi-stage behavior change theory to model the process of bike share adoption," Transport Policy, Elsevier, vol. 77(C), pages 30-45.
    20. Suzanne Maas & Paraskevas Nikolaou & Maria Attard & Loukas Dimitriou, 2021. "Heat, Hills and the High Season: A Model-Based Comparative Analysis of Spatio-Temporal Factors Affecting Shared Bicycle Use in Three Southern European Islands," Sustainability, MDPI, vol. 13(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4611-:d:367567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.