IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2435-d225602.html
   My bibliography  Save this article

Value Chains for Industrial Biotechnology in the Bioeconomy-Innovation System Analysis

Author

Listed:
  • Sven Wydra

    (Fraunhofer Institute for Systems and Innovation Research, Breslauer Str. 48, Karlsruhe 76131, Germany)

Abstract

Industrial Biotechnology (IB) is considered as a key technology with a strong potential to generate new growth, spur innovation, increase productivity, and tackle environmental and climate challenges. Industrial Biotechnology is applied in many segments of the bioeconomy ranging from chemicals, biofuels, bioenergy, bio-based plastics, and other biomaterials. However, the segments differ profoundly regarding volume, price, type, and amount of needed feedstock, market condition, societal contributions as well as maturity, etc. This article aims to analyse a set of five different value chains in the technological innovation system (TIS) framework in order to derive adequate policy conclusions. Hereby, we focus on quite distinctive value chains to take into account the high heterogeneity of biotechnological applications. The analysis points out that policy maker have to take into account the fundamental differences in the innovation systems and to implement differentiated innovation policy to address system weaknesses. In particular, market formation is often the key bottleneck innovation systems, but different policy instruments for various application segments needed.

Suggested Citation

  • Sven Wydra, 2019. "Value Chains for Industrial Biotechnology in the Bioeconomy-Innovation System Analysis," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2435-:d:225602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2435/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2435/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tylecote, Andrew, 2019. "Biotechnology as a new techno-economic paradigm that will help drive the world economy and mitigate climate change," Research Policy, Elsevier, vol. 48(4), pages 858-868.
    2. Hakan Eggert & Mads Greaker, 2014. "Promoting Second Generation Biofuels: Does the First Generation Pave the Road?," Energies, MDPI, vol. 7(7), pages 1-16, July.
    3. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars," Science and Public Policy, Oxford University Press, vol. 39(1), pages 74-87, February.
    4. Malerba, Franco, 2002. "Sectoral systems of innovation and production," Research Policy, Elsevier, vol. 31(2), pages 247-264, February.
    5. Erika Check Hayden, 2014. "Synthetic-biology firms shift focus," Nature, Nature, vol. 505(7485), pages 598-598, January.
    6. Oecd, 2013. "Policies for Bioplastics in the Context of a Bioeconomy," OECD Science, Technology and Industry Policy Papers 10, OECD Publishing.
    7. Anna J. Wieczorek & Marko P. Hekkert, 2012. "Corrigendum to 'Systemic instruments for systemic innovation problems: A framework for policy makers and innovation scholars'," Science and Public Policy, Oxford University Press, vol. 39(6), pages 842-842, December.
    8. Bergek, Anna & Jacobsson, Staffan & Carlsson, Bo & Lindmark, Sven & Rickne, Annika, 2008. "Analyzing the functional dynamics of technological innovation systems: A scheme of analysis," Research Policy, Elsevier, vol. 37(3), pages 407-429, April.
    9. Swann, G. M. Peter & Prevezer, Martha & Stout, David (ed.), 1998. "The Dynamics of Industrial Clustering: International Comparisons in Computing and Biotechnology," OUP Catalogue, Oxford University Press, number 9780198289593.
    10. Rolf Meyer, 2017. "Bioeconomy Strategies: Contexts, Visions, Guiding Implementation Principles and Resulting Debates," Sustainability, MDPI, vol. 9(6), pages 1-32, June.
    11. Markard, Jochen & Raven, Rob & Truffer, Bernhard, 2012. "Sustainability transitions: An emerging field of research and its prospects," Research Policy, Elsevier, vol. 41(6), pages 955-967.
    12. Thomas Dietz & Jan Börner & Jan Janosch Förster & Joachim Von Braun, 2018. "Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    13. Markus M. Bugge & Teis Hansen & Antje Klitkou, 2016. "What Is the Bioeconomy? A Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    14. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra Gottinger & Luana Ladu & Rainer Quitzow, 2020. "Studying the Transition towards a Circular Bioeconomy—A Systematic Literature Review on Transition Studies and Existing Barriers," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    2. Wilde, Kerstin & Hermans, Frans, 2021. "Innovation in the bioeconomy: Perspectives of entrepreneurs on relevant framework conditions," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 314.
    3. José Magano & Cláudia Sousa Silva & Micaela Martins, 2021. "Project Management in the Biotech Context: Exploring the Interrelation between Maturity and Sustainable Project Management," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    4. Alberto Bezama & Carlo Ingrao & Sinéad O’Keeffe & Daniela Thrän, 2019. "Resources, Collaborators, and Neighbors: The Three-Pronged Challenge in the Implementation of Bioeconomy Regions," Sustainability, MDPI, vol. 11(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kieft, Alco & Harmsen, Robert & Hekkert, Marko P., 2020. "Toward ranking interventions for Technological Innovation Systems via the concept of Leverage Points," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    2. Walrave, Bob & Raven, Rob, 2016. "Modelling the dynamics of technological innovation systems," Research Policy, Elsevier, vol. 45(9), pages 1833-1844.
    3. Dahesh, Mehran Badin & Tabarsa, Gholamali & Zandieh, Mostafa & Hamidizadeh, Mohammadreza, 2020. "Reviewing the intellectual structure and evolution of the innovation systems approach: A social network analysis," Technology in Society, Elsevier, vol. 63(C).
    4. Ghazinoory, Sepehr & Nasri, Shohreh & Ameri, Fatemeh & Montazer, Gholam Ali & Shayan, Ali, 2020. "Why do we need ‘Problem-oriented Innovation System (PIS)’ for solving macro-level societal problems?," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    5. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.
    6. Verburg, René W. & Verberne, Emma & Negro, Simona O., 2022. "Accelerating the transition towards sustainable agriculture: The case of organic dairy farming in the Netherlands," Agricultural Systems, Elsevier, vol. 198(C).
    7. Rohe, Sebastian & Oltmer, Marie & Wolter, Hendrik & Gmeiner, Nina & Tschersich , Julia, 2022. "Forever Niche: Why do organic vegetable varieties not diffuse?," Papers in Innovation Studies 2022/8, Lund University, CIRCLE - Centre for Innovation Research.
    8. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    9. Kilcline, Kevin & Dhubháin, Áine Ní & Heanue, Kevin & O'Donoghue, Cathal & Ryan, Mary, 2021. "Addressing the challenge of wood mobilisation through a systemic innovation lens: The Irish forest sector innovation system," Forest Policy and Economics, Elsevier, vol. 128(C).
    10. Edmondson, Duncan L. & Kern, Florian & Rogge, Karoline S., 2019. "The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions," Research Policy, Elsevier, vol. 48(10).
    11. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    12. Alexandra Gottinger & Luana Ladu & Rainer Quitzow, 2020. "Studying the Transition towards a Circular Bioeconomy—A Systematic Literature Review on Transition Studies and Existing Barriers," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    13. Raven, Rob & Walrave, Bob, 2020. "Overcoming transformational failures through policy mixes in the dynamics of technological innovation systems," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    14. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    15. Sebastian Rohe & Jannika Mattes, 2021. "What about the regional level? Regional configurations of Technological Innovation Systems," PEGIS geo-disc-2021_01, Institute for Economic Geography and GIScience, Department of Socioeconomics, Vienna University of Economics and Business.
    16. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. van Rijnsoever, Frank J. & van den Berg, Jesse & Koch, Joost & Hekkert, Marko P., 2015. "Smart innovation policy: How network position and project composition affect the diversity of an emerging technology," Research Policy, Elsevier, vol. 44(5), pages 1094-1107.
    18. Hu, Rui & Skea, Jim & Hannon, Matthew J., 2018. "Measuring the energy innovation process: An indicator framework and a case study of wind energy in China," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 227-244.
    19. Jonas Heiberg & Bernhard Truffer, 2021. "Overcoming the harmony fallacy: How values shape the course of innovation systems," GEIST - Geography of Innovation and Sustainability Transitions 2021(03), GEIST Working Paper Series.
    20. Rogge, Karoline S. & Pfluger, Benjamin & Geels, Frank W., 2020. "Transformative policy mixes in socio-technical scenarios: The case of the low-carbon transition of the German electricity system (2010–2050)," Technological Forecasting and Social Change, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2435-:d:225602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.