IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5786-d277942.html
   My bibliography  Save this article

Incorporating External Effects into Project Sustainability Assessments: The Case of a Green Campus Initiative Based on a Solar PV System

Author

Listed:
  • Heng Shue Teah

    (Graduate Program in Sustainability Science—Global Leadership Initiative (GPSS-GLI), Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan)

  • Qinyu Yang

    (Graduate Program in Sustainability Science—Global Leadership Initiative (GPSS-GLI), Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan)

  • Motoharu Onuki

    (Graduate Program in Sustainability Science—Global Leadership Initiative (GPSS-GLI), Division of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 332 Building of Environmental Studies, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8563, Japan)

  • Heng Yi Teah

    (Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan)

Abstract

We demonstrated that a green campus initiative can reduce the carbon footprint of a university and improve the disaster resilience of the local community. A project sustainability assessment framework was structured to support the initiative. First, an on-campus solar photovoltaic (PV) system was designed. The project performance in terms of financial cost and greenhouse gas (GHG) emissions was assessed using life cycle cost analysis (LCC) and a life cycle assessment (LCA), respectively. Then, we explored the incorporation of positive social impacts on the local community in the context of natural disaster-prone Japan. Indicators for improving the disaster resilience of the residents were defined based on the Sendai Framework. Our results showed that the proposed solar PV system could provide an electricity self-sufficiency rate of 31% for the campus. Greenhouse gas emissions of 0.0811 kg CO 2 -eq/kWh would decrease the annual emissions from campus electricity use by 27%. Considering the substituted daytime electricity purchase, a payback period of 12.9 years was achievable. This solar PV system could serve as an emergency power source to 4666–8454 nearby residents and 8532 smart city residents. This external effect would encourage stakeholders like local government and developers to participate in the project.

Suggested Citation

  • Heng Shue Teah & Qinyu Yang & Motoharu Onuki & Heng Yi Teah, 2019. "Incorporating External Effects into Project Sustainability Assessments: The Case of a Green Campus Initiative Based on a Solar PV System," Sustainability, MDPI, vol. 11(20), pages 1-13, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5786-:d:277942
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raghava Kommalapati & Akhil Kadiyala & Md. Tarkik Shahriar & Ziaul Huque, 2017. "Review of the Life Cycle Greenhouse Gas Emissions from Different Photovoltaic and Concentrating Solar Power Electricity Generation Systems," Energies, MDPI, vol. 10(3), pages 1-18, March.
    2. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
    3. Matthias Finkbeiner & Erwin M. Schau & Annekatrin Lehmann & Marzia Traverso, 2010. "Towards Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 2(10), pages 1-14, October.
    4. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    2. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    3. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    4. Kyoik Choi & Jangwon Suh, 2023. "Fault Detection and Power Loss Assessment for Rooftop Photovoltaics Installed in a University Campus, by Use of UAV-Based Infrared Thermography," Energies, MDPI, vol. 16(11), pages 1-16, June.
    5. Hongmei Zhao & Yang Xu & Wei-Chiang Hong & Yi Liang & Dandan Zou, 2021. "Smart Evaluation of Green Campus Sustainability Considering Energy Utilization," Sustainability, MDPI, vol. 13(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristina Henzler & Stephanie D. Maier & Michael Jäger & Rafael Horn, 2020. "SDG-Based Sustainability Assessment Methodology for Innovations in the Field of Urban Surfaces," Sustainability, MDPI, vol. 12(11), pages 1-32, June.
    2. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    3. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    4. Waterson, Michael, 2017. "The characteristics of electricity storage, renewables and markets," Energy Policy, Elsevier, vol. 104(C), pages 466-473.
    5. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    6. Oana Țugulea, 2017. "City Brand Personality—Relations with Dimensions and Dimensions Inter-Relations," Sustainability, MDPI, vol. 9(12), pages 1-22, December.
    7. Cristina López & Rocío Ruíz-Benítez & Carmen Vargas-Machuca, 2019. "On the Environmental and Social Sustainability of Technological Innovations in Urban Bus Transport: The EU Case," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    8. Moon, Yongma & Baran, Mesut, 2018. "Economic analysis of a residential PV system from the timing perspective: A real option model," Renewable Energy, Elsevier, vol. 125(C), pages 783-795.
    9. Mauro Sciarelli & Mario Tani & Giovanni Landi & Ornella Papaluca, 2019. "The Impact of Social Responsibility Disclosure on Corporate Financial Health: Evidences from Some Italian Public Companies," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 109-122, March.
    10. Julian Gaus & Sven Wehking & Andreas H. Glas & Michael Eßig, 2022. "Economic Sustainability by Using Life Cycle Cost Information in the Buying Center: Insights from the Public Sector," Sustainability, MDPI, vol. 14(3), pages 1-28, February.
    11. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    12. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    13. Jülch, Verena, 2016. "Comparison of electricity storage options using levelized cost of storage (LCOS) method," Applied Energy, Elsevier, vol. 183(C), pages 1594-1606.
    14. Man Yu & Anthony Halog, 2015. "Solar Photovoltaic Development in Australia—A Life Cycle Sustainability Assessment Study," Sustainability, MDPI, vol. 7(2), pages 1-35, January.
    15. Rappaport, Ron D. & Miles, John, 2017. "Cloud energy storage for grid scale applications in the UK," Energy Policy, Elsevier, vol. 109(C), pages 609-622.
    16. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    17. Serenella Sala & Rana Pant & Michael Hauschild & David Pennington, 2012. "Research Needs and Challenges from Science to Decision Support. Lesson Learnt from the Development of the International Reference Life Cycle Data System (ILCD) Recommendations for Life Cycle Impact As," Sustainability, MDPI, vol. 4(7), pages 1-14, June.
    18. Henke, S. & Theuvsen, L., 2014. "Social Life Cycle Assessment: Eine sozioökonomische Analyse der Biogasproduktion," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.
    19. Christoph Wenge & Robert Pietracho & Stephan Balischewski & Bartlomiej Arendarski & Pio Lombardi & Przemyslaw Komarnicki & Leszek Kasprzyk, 2020. "Multi Usage Applications of Li-Ion Battery Storage in a Large Photovoltaic Plant: A Practical Experience," Energies, MDPI, vol. 13(18), pages 1-18, September.
    20. Thies, Christian & Kieckhäfer, Karsten & Spengler, Thomas S. & Sodhi, Manbir S., 2019. "Operations research for sustainability assessment of products: A review," European Journal of Operational Research, Elsevier, vol. 274(1), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5786-:d:277942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.