IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5508-d273648.html
   My bibliography  Save this article

Carbon Communities and Hotspots for Carbon Emissions Reduction in China

Author

Listed:
  • Li Huang

    (School of Economics, Shanghai University, Shanghai 200444, China
    SHU-UTS SILC Business School, Shanghai University, Shanghai 201800, China
    University of Technology Sydney, Institute for Sustainable Futures, Sydney, NSW 2007, Australia)

  • Scott Kelly

    (University of Technology Sydney, Institute for Sustainable Futures, Sydney, NSW 2007, Australia)

  • Xuan Lu

    (Commonwealth Bank of Australia, Sydney, NSW 2000, Australia)

  • Kangjuan Lv

    (SHU-UTS SILC Business School, Shanghai University, Shanghai 201800, China)

  • Xunpeng Shi

    (University of Technology Sydney, Australia-China Relations Institute, Sydney, NSW 2007, Australia)

  • Damien Giurco

    (University of Technology Sydney, Institute for Sustainable Futures, Sydney, NSW 2007, Australia)

Abstract

With China’s commitment to peak its emissions by 2030, sectoral emissions are under the spotlight due to the rolling out of the national emission trading scheme (ETS). However, the current sector policies focus either on the production side or consumption while the majority of sectors along the transmission were overlooked. This research combines input–output modelling and network analysis to track the embodied carbon emissions among thirty sectors of thirty provinces in China. Based on the large-data resolution network, a two-step network reduction algorithm is used to extract the backbone of the network. In addition, network centrality metrics and community detection algorithms are used to assess each individual sector’s roles, and to reveal the carbon communities where sectors have intensive emission links. The research results suggest that the sectors with high out-degree, in-degree or betweenness can act as leverage points for carbon emissions mitigation. In addition to the electricity sector, which is included in the national ETS, the study also found that the metallurgy and construction sectors should be prioritized for emissions reduction from national and local levels. However, the hotpots are different across provinces and thus provincial specific targeted policies should be formed. Moreover, there are nineteen carbon communities in China with different features, which provides direction for provincial governments’ external collaboration for synergistic effects.

Suggested Citation

  • Li Huang & Scott Kelly & Xuan Lu & Kangjuan Lv & Xunpeng Shi & Damien Giurco, 2019. "Carbon Communities and Hotspots for Carbon Emissions Reduction in China," Sustainability, MDPI, vol. 11(19), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5508-:d:273648
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jing Bai & Jiansheng Qu & Tek Narayan Maraseni & Jinjia Wu & Li Xu & Yujie Fan, 2019. "Spatial and Temporal Variations of Embodied Carbon Emissions in China’s Infrastructure," Sustainability, MDPI, vol. 11(3), pages 1-17, January.
    2. Duan, Cuncun & Chen, Bin & Feng, Kuishuang & Liu, Zhu & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2018. "Interregional carbon flows of China," Applied Energy, Elsevier, vol. 227(C), pages 342-352.
    3. Zhang, Bo & Qiao, H. & Chen, B., 2015. "Embodied energy uses by China’s four municipalities: A study based on multi-regional input–output model," Ecological Modelling, Elsevier, vol. 318(C), pages 138-149.
    4. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    5. Hanaka, Tesshu & Kagawa, Shigemi & Ono, Hirotaka & Kanemoto, Keiichiro, 2017. "Finding environmentally critical transmission sectors, transactions, and paths in global supply chain networks," Energy Economics, Elsevier, vol. 68(C), pages 44-52.
    6. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    7. Meng, Lei & Guo, Ju'e & Chai, Jian & Zhang, Zengkai, 2011. "China's regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies," Energy Policy, Elsevier, vol. 39(10), pages 6136-6144, October.
    8. Su, Bin & Thomson, Elspeth, 2016. "China's carbon emissions embodied in (normal and processing) exports and their driving forces, 2006–2012," Energy Economics, Elsevier, vol. 59(C), pages 414-422.
    9. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    10. Xuecheng Wang & Xu Tang & Baosheng Zhang & Benjamin C. McLellan & Yang Lv, 2018. "Provincial Carbon Emissions Reduction Allocation Plan in China Based on Consumption Perspective," Sustainability, MDPI, vol. 10(5), pages 1-23, April.
    11. Su, Bin & Ang, B.W., 2014. "Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China," Applied Energy, Elsevier, vol. 114(C), pages 377-384.
    12. Rita María del Río-Chanona & Jelena Grujić & Henrik Jeldtoft Jensen, 2017. "Trends of the World Input and Output Network of Global Trade," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-14, January.
    13. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Li & Kelly, Scott & Shi, Xunpeng & Lv, Kangjuan & Lu, Xuan & Giurco, Damien, 2022. "Maximizing the effectiveness of carbon emissions abatement in China across carbon communities," Energy Economics, Elsevier, vol. 106(C).
    2. Pang, Qinghua & Dong, Xianwei & Zhang, Lina & Chiu, Yung-ho, 2023. "Drivers and key pathways of the household energy consumption in the Yangtze river economic belt," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    2. Huang, Li & Kelly, Scott & Shi, Xunpeng & Lv, Kangjuan & Lu, Xuan & Giurco, Damien, 2022. "Maximizing the effectiveness of carbon emissions abatement in China across carbon communities," Energy Economics, Elsevier, vol. 106(C).
    3. Tang, Miaohan & Hong, Jingke & Liu, Guiwen & Shen, Geoffrey Qiping, 2019. "Exploring energy flows embodied in China's economy from the regional and sectoral perspectives via combination of multi-regional input–output analysis and a complex network approach," Energy, Elsevier, vol. 170(C), pages 1191-1201.
    4. Li, Meng & Gao, Yuning & Meng, Bo & Yang, Zhusong, 2021. "Managing the mitigation: Analysis of the effectiveness of target-based policies on China's provincial carbon emission and transfer," Energy Policy, Elsevier, vol. 151(C).
    5. Zhou, Dequn & Zhou, Xiaoyong & Xu, Qing & Wu, Fei & Wang, Qunwei & Zha, Donglan, 2018. "Regional embodied carbon emissions and their transfer characteristics in China," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 180-193.
    6. Zhai, Mengyu & Huang, Guohe & Liu, Lirong & Zheng, Boyue & Guan, Yuru, 2020. "Inter-regional carbon flows embodied in electricity transmission: network simulation for energy-carbon nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    7. Pu, Zhengning & Fu, Jiasha & Zhang, Chi & Shao, Jun, 2018. "Structure decomposition analysis of embodied carbon from transition economies," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 1-12.
    8. Zhang, Bo & Yang, T.R. & Chen, B. & Sun, X.D., 2016. "China’s regional CH4 emissions: Characteristics, interregional transfer and mitigation policies," Applied Energy, Elsevier, vol. 184(C), pages 1184-1195.
    9. Yan, Bingqian & Duan, Yuwan & Wang, Shouyang, 2020. "China’s emissions embodied in exports: How regional and trade heterogeneity matter," Energy Economics, Elsevier, vol. 87(C).
    10. Feng, Tong & Du, Huibin & Zhang, Zengkai & Mi, Zhifu & Guan, Dabo & Zuo, Jian, 2020. "Carbon transfer within China: Insights from production fragmentation," Energy Economics, Elsevier, vol. 86(C).
    11. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    12. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    13. Zhong, Zhangqi & Jiang, Lei & Zhou, Peng, 2018. "Transnational transfer of carbon emissions embodied in trade: Characteristics and determinants from a spatial perspective," Energy, Elsevier, vol. 147(C), pages 858-875.
    14. Zhang, Bo & Qu, Xue & Meng, Jing & Sun, Xudong, 2017. "Identifying primary energy requirements in structural path analysis: A case study of China 2012," Applied Energy, Elsevier, vol. 191(C), pages 425-435.
    15. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    16. Li, Zheng & Pan, Lingying & Fu, Feng & Liu, Pei & Ma, Linwei & Amorelli, Angelo, 2014. "China's regional disparities in energy consumption: An input–output analysis," Energy, Elsevier, vol. 78(C), pages 426-438.
    17. Zhang, Zengkai & Guo, Ju'e & Hewings, Geoffrey J.D., 2014. "The effects of direct trade within China on regional and national CO2 emissions," Energy Economics, Elsevier, vol. 46(C), pages 161-175.
    18. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    19. Guo, Xuepeng & Pang, Jun, 2023. "Analysis of provincial CO2 emission peaking in China: Insights from production and consumption," Applied Energy, Elsevier, vol. 331(C).
    20. Zhu, Bangzhu & Su, Bin & Li, Yingzhu, 2018. "Input-output and structural decomposition analysis of India’s carbon emissions and intensity, 2007/08 – 2013/14," Applied Energy, Elsevier, vol. 230(C), pages 1545-1556.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5508-:d:273648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.