IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i17p4553-d259808.html
   My bibliography  Save this article

A Methodology to Analyze the Presence of Sustainability in Engineering Curricula. Case of Study: Ten Spanish Engineering Degree Curricula

Author

Listed:
  • Fermín Sánchez-Carracedo

    (University Research Institute for Sustainability Science and Technology (IS.UPC), Universitat Politècnica de Catalunya–BarcelonaTech, Campus Nord, C/Jordi Girona 34, 08034 Barcelona, Spain)

  • Francisco Manuel Moreno-Pino

    (Departmento de Didáctica, University of Cádiz, 11519 Cádiz, Spain)

  • Bárbara Sureda

    (University Research Institute for Sustainability Science and Technology (IS.UPC), Universitat Politècnica de Catalunya–BarcelonaTech, Campus Nord, C/Jordi Girona 34, 08034 Barcelona, Spain)

  • Miguel Antúnez

    (Servicio de Protección Ambiental, University of Córdoba, 14014 Córdoba, Spain)

  • Ibon Gutiérrez

    (Facultad de Formación de Profesorado y Educación, Universidad Autónoma de Madrid, 28049 Madrid, Spain)

Abstract

This paper presents a methodology to analyze the sustainability presence level in the curriculum of an engineering degree. The methodology is applied to ten engineering degrees of the Spanish university system, taught in three different universities. The design used for the research is quantitative and correlational. The analytical instrument used is the engineering sustainability map, which contains the learning outcomes related to sustainability that are expected of engineering students upon completion of their studies. The methodology is used to analyze the curricula of the ten engineering degrees in order to identify what learning outcomes of the engineering sustainability map are developed in each degree. The results indicate that the sustainability competency least present in all the degrees is the “participation in community processes that promotes sustainability,” with an average presence of 23.3%, while the most present is the “application of ethical principles related to the values of sustainability in personal and professional behavior,” with an average presence of 76.6%. In general, learning outcomes related to sustainability have an average presence of 52.1%, so practically half of the cells in the ten engineering sustainability maps are not developed in the degrees under study.

Suggested Citation

  • Fermín Sánchez-Carracedo & Francisco Manuel Moreno-Pino & Bárbara Sureda & Miguel Antúnez & Ibon Gutiérrez, 2019. "A Methodology to Analyze the Presence of Sustainability in Engineering Curricula. Case of Study: Ten Spanish Engineering Degree Curricula," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4553-:d:259808
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/17/4553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/17/4553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Naresh Giangrande & Rehema M. White & May East & Ross Jackson & Tim Clarke & Michel Saloff Coste & Gil Penha-Lopes, 2019. "A Competency Framework to Assess and Activate Education for Sustainable Development: Addressing the UN Sustainable Development Goals 4.7 Challenge," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Gemma Tejedor & Jordi Segalàs & Ángela Barrón & Mónica Fernández-Morilla & M. Teresa Fuertes & Jorge Ruiz-Morales & Ibón Gutiérrez & Esther García-González & Pilar Aramburuzabala & Àngels Hernández, 2019. "Didactic Strategies to Promote Competencies in Sustainability," Sustainability, MDPI, vol. 11(7), pages 1-24, April.
    3. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    4. Denise Wilson, 2019. "Exploring the Intersection between Engineering and Sustainability Education," Sustainability, MDPI, vol. 11(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leire Guerenabarrena-Cortazar & Jon Olaskoaga-Larrauri & Ernesto Cilleruelo-Carrasco, 2021. "Integration of Sustainability in Engineering and Architectural Studies in Spanish Universities," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    2. Fermín Sánchez-Carracedo & Jordi Segalas & Gorka Bueno & Pere Busquets & Joan Climent & Victor G. Galofré & Boris Lazzarini & David Lopez & Carme Martín & Rafael Miñano & Estíbaliz Sáez de Cámara & Bá, 2021. "Tools for Embedding and Assessing Sustainable Development Goals in Engineering Education," Sustainability, MDPI, vol. 13(21), pages 1-30, November.
    3. Ali M. Al-Bahi & Mohamed S. Abd-Elwahed & Abdelfattah Y. Soliman, 2021. "Implementation of Sustainability Indicators in Engineering Education Using a Combined Balanced Scorecard and Quality Function Deployment Approaches," Sustainability, MDPI, vol. 13(13), pages 1-28, June.
    4. Jennifer Maria Krah & Julian Reimann & Heike Molitor, 2021. "Sustainability in Brandenburg Study Programs. Perspectives for Anchoring Sustainability in Higher Education Curricula," Sustainability, MDPI, vol. 13(7), pages 1-32, April.
    5. Rafael Miñano Rubio & Diego Uribe & Ana Moreno-Romero & Susana Yáñez, 2019. "Embedding Sustainability Competences into Engineering Education. The Case of Informatics Engineering and Industrial Engineering Degree Programs at Spanish Universities," Sustainability, MDPI, vol. 11(20), pages 1-29, October.
    6. Jordi Martínez-Ventura & Eduardo de-Miguel-Arbonés & Carla Sentieri-Omarrementería & Juanjo Galan & María Calero-Llinares, 2021. "A Tool to Assess Architectural Education from the Sustainable Development Perspective and the Students’ Viewpoint," Sustainability, MDPI, vol. 13(17), pages 1-40, August.
    7. Rosa-María Rodríguez-Jiménez & Pedro J. Lara-Bercial & María-José Terrón-López, 2021. "Training Freshmen Engineers as Managers to Develop Soft Skills: A Person-Centred Approach," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    8. Dolors Gil-Doménech & Nina Magomedova & Eugenio José Sánchez-Alcázar & Matilde Lafuente-Lechuga, 2021. "Integrating Sustainability in the Business Administration and Management Curriculum: A Sustainability Competencies Map," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    9. Lidia Alexa & Veronica Maier & Anca Șerban & Razvan Craciunescu, 2020. "Engineers Changing the World: Education for Sustainability in Romanian Technical Universities—An Empirical Web-Based Content Analysis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    10. Alba Manresa & Jasmina Berbegal-Mirabent & Úrsula Faura-Martínez & Juan-Vicente Llinares-Ciscar, 2021. "What Do Freshmen Know about Sustainability? Analysing the Skill Gap among University Business Administration Students," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    11. Ibifuro Ken-Giami & Sarinova Simandjuntak & Linda Yang & Ann Coats & David Sanders, 2022. "Establishing the Relative Importance of Specific Sustainability Themes That Influence Women’s Choice of Engineering as a Career Using the Analytical Hierarchy Process," Sustainability, MDPI, vol. 14(1), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deepti Mishra & Alok Mishra, 2020. "Sustainability Inclusion in Informatics Curriculum Development," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    2. Leire Agirreazkuenaga, 2020. "Education for Agenda 2030: What Direction do We Want to Take Going Forward?," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    3. Míriam Hernández-Barco & Jesús Sánchez-Martín & José Blanco-Salas & Trinidad Ruiz-Téllez, 2020. "Teaching Down to Earth —Service-Learning Methodology for Science Education and Sustainability at the University Level: A Practical Approach," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    4. Małgorzata Gawlik-Kobylińska, 2021. "Can Security and Safety Education Support Sustainability? Lessons Learned from Poland," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    5. CHEN, Helen S.Y., 2020. "Designing Sustainable Humanitarian Supply Chains," OSF Preprints m82ar, Center for Open Science.
    6. Denise Ravet, 2011. "Lean production: the link between supply chain and sustainable development in an international environment," Post-Print hal-00691666, HAL.
    7. Mara Del Baldo, 2012. "Corporate social responsibility and corporate governance in Italian SMEs: the experience of some “spirited businesses”," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 16(1), pages 1-36, February.
    8. Michael Howes & Liana Wortley & Ruth Potts & Aysin Dedekorkut-Howes & Silvia Serrao-Neumann & Julie Davidson & Timothy Smith & Patrick Nunn, 2017. "Environmental Sustainability: A Case of Policy Implementation Failure?," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    9. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.
    10. Chin-Shan Lu & Kuo-Chung Shang & Chi-Chang Lin, 2016. "Examining sustainability performance at ports: port managers’ perspectives on developing sustainable supply chains," Maritime Policy & Management, Taylor & Francis Journals, vol. 43(8), pages 909-927, November.
    11. Kebede, Yohannes, 1993. "The Limits to Common Resource Management: The Bypassed Commons or Commons without Tragedy," MPRA Paper 662, University Library of Munich, Germany, revised 01 May 1993.
    12. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    13. Nora Mzavanadze, 2009. "Building A Framework For National Sustainable Development Assessment And Application For Lithuania: Sustainability In Transition," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 97-130.
    14. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    15. Isin Ceti̇n, 2017. "Accounting Requirements And Records On Bank Subscribed Capital Compliance With European Directives," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 52-68, February.
    16. Jean-Michel Sahuta & Sandrine Boulerne & Medhi Mili & Frédéric Teulon, 2014. "What Relation Exists Between Corporate Social Responsibility (Csr) And Longevity Of Firms?," Working Papers 2014-248, Department of Research, Ipag Business School.
    17. Alba Rocio Gutierrez Garzon & Pete Bettinger & Jacek Siry & Bin Mei & Jesse Abrams, 2019. "The Terms Foresters and Planners in the United States Use to Infer Sustainability in Forest Management Plans: A Survey Analysis," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    18. Shehu Folaranmi Gbolahan Yusuf & Oluwabunmi Oluwaseun Popoola & Lindokhule Gwala & Thinandavha Nesengani, 2021. "Promoting University–Community Alliances in the Experiential Learning Activities of Agricultural Extension Postgraduate Students at the University of Fort Hare, South Africa," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    19. Filipa Correia & Philipp Erfruth & Julie Bryhn, 2018. "The 2030 Agenda: The roadmap to GlobALLizaton," Working Papers 156, United Nations, Department of Economics and Social Affairs.
    20. Choy Yee Keong, 2005. "Sustainable Development—An Institutional Enclave (with Special Reference to the Bakun Dam–Induced Development Strategy in Malaysia)," Journal of Economic Issues, Taylor & Francis Journals, vol. 39(4), pages 951-971, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:17:p:4553-:d:259808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.