IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4102-d252833.html
   My bibliography  Save this article

Planning an Intermodal Terminal for the Sustainable Transport Networks

Author

Listed:
  • Snežana Tadić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Beograd, Serbia)

  • Mladen Krstić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11000 Beograd, Serbia)

  • Violeta Roso

    (Department of Technology Management and Economics, Chalmers University of Technology, 41296 Gothenburg, Sweden)

  • Nikolina Brnjac

    (Faculty of Transport and Traffic Sciences, University of Zagreb, 10000 Zagreb, Croatia)

Abstract

Growing competition in the global market imposes the need for adequate planning of transportation processes and development of intermodal transport networks, whereby intermodal terminals play a key role. This paper proposes a methodology for prioritization of the intermodal terminal’s development features, as the procedure in its planning process, leading to the design of the intermodal terminal in accordance with the needs of various stakeholders and the principles of the sustainable development. As the stakeholders often have conflicting interests and objectives, it is necessary to consider a broad set of requirements and developmental features that enable the fulfillment of the defined requirements. In order to solve the problem this paper proposes a new hybrid multi-criteria decision-making model that combines Delphi, Analytical Network Process (ANP) and Quality Function Deployment (QFD) methods in the fuzzy environment. The applicability of the proposed model is demonstrated by solving an example of planning an intermodal terminal in Belgrade.

Suggested Citation

  • Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2019. "Planning an Intermodal Terminal for the Sustainable Transport Networks," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4102-:d:252833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teye, Collins & Bell, Michael G H & Bliemer, Michiel C J, 2017. "Urban intermodal terminals: The entropy maximising facility location problem," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 64-81.
    2. SÖRENSEN, Kenneth & VANOVERMEIRE, Christine & BUSSCHAERT, Sylvie, 2012. "Efficient metaheuristics to solve the intermodal terminal location problem," Working Papers 2012001, University of Antwerp, Faculty of Business and Economics.
    3. Fedele Iannone, 2012. "A model optimizing the port-hinterland logistics of containers: The case of the Campania region in Southern Italy," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(1), pages 33-72, March.
    4. Chan, Lai-Kow & Wu, Ming-Lu, 2002. "Quality function deployment: A literature review," European Journal of Operational Research, Elsevier, vol. 143(3), pages 463-497, December.
    5. Alena Khaslavskaya & Violeta Roso, 2019. "Outcome-Driven Supply Chain Perspective on Dry Ports," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    6. Verma, Manish & Verter, Vedat & Zufferey, Nicolas, 2012. "A bi-objective model for planning and managing rail-truck intermodal transportation of hazardous materials," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 132-149.
    7. Miguel Ángel López-Navarro, 2014. "Environmental Factors and Intermodal Freight Transportation: Analysis of the Decision Bases in the Case of Spanish Motorways of the Sea," Sustainability, MDPI, vol. 6(3), pages 1-23, March.
    8. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    9. Hilde Heggen & Yves Molenbruch & An Caris & Kris Braekers, 2019. "Intermodal Container Routing: Integrating Long-Haul Routing and Local Drayage Decisions," Sustainability, MDPI, vol. 11(6), pages 1-36, March.
    10. Anastasia Christodoulou & Zeeshan Raza & Johan Woxenius, 2019. "The Integration of RoRo Shipping in Sustainable Intermodal Transport Chains: The Case of a North European RoRo Service," Sustainability, MDPI, vol. 11(8), pages 1-17, April.
    11. Iris, Çağatay & Christensen, Jonas & Pacino, Dario & Ropke, Stefan, 2018. "Flexible ship loading problem with transfer vehicle assignment and scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 113-134.
    12. Nishimura, Etsuko & Imai, Akio & Janssens, Gerrit K. & Papadimitriou, Stratos, 2009. "Container storage and transshipment marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 771-786, September.
    13. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    14. Ballis, Athanasios & Golias, John, 2002. "Comparative evaluation of existing and innovative rail-road freight transport terminals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 36(7), pages 593-611, August.
    15. Abacoumkin, Constantinos & Ballis, Athanasios, 2004. "Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area," European Journal of Operational Research, Elsevier, vol. 152(2), pages 410-419, January.
    16. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
    17. Tadić, Snežana & Krstić, Mladen & Brnjac, Nikolina, 2019. "Selection of efficient types of inland intermodal terminals," Journal of Transport Geography, Elsevier, vol. 78(C), pages 170-180.
    18. Bask, Anu & Roso, Violeta & Andersson, Dan & Hämäläinen, Erkki, 2014. "Development of seaport–dry port dyads: two cases from Northern Europe," Journal of Transport Geography, Elsevier, vol. 39(C), pages 85-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ercan Kurtulus & Ismail Bilge Cetin, 2019. "Assessing the Environmental Benefits of Dry Port Usage: A Case of Inland Container Transport in Turkey," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    2. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    3. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    4. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    5. Meenu Singh & Millie Pant, 2021. "A review of selected weighing methods in MCDM with a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(1), pages 126-144, February.
    6. Reinhart Buenk & Sara S (Saartjie) Grobbelaar & Isabel Meyer, 2019. "A Framework for the Sustainability Assessment of (Micro)transit Systems," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    7. Ada Wolny & Marek Ogryzek & Ryszard Źróbek, 2019. "Towards Sustainable Development and Preventing Exclusions—Determining Road Accessibility at the Sub-Regional and Local Level in Rural Areas of Poland," Sustainability, MDPI, vol. 11(18), pages 1-21, September.
    8. Indre Siksnelyte-Butkiene & Dalia Streimikiene, 2022. "Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries’ Achievements," Energies, MDPI, vol. 15(21), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Snežana Tadić & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2020. "Dry Port Terminal Location Selection by Applying the Hybrid Grey MCDM Model," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    2. Snežana Tadić & Milovan Kovač & Mladen Krstić & Violeta Roso & Nikolina Brnjac, 2021. "The Selection of Intermodal Transport System Scenarios in the Function of Southeastern Europe Regional Development," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    3. Erica Varese & Danilo Stefano Marigo & Mariarosaria Lombardi, 2020. "Dry Port: A Review on Concept, Classification, Functionalities and Technological Processes," Logistics, MDPI, vol. 4(4), pages 1-16, November.
    4. Xiaodong Li & Haibo Kuang & Yan Hu, 2019. "Carbon Mitigation Strategies of Port Selection and Multimodal Transport Operations—A Case Study of Northeast China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    5. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    6. Elifcan Göçmen & Rızvan Erol, 2018. "The Problem of Sustainable Intermodal Transportation: A Case Study of an International Logistics Company, Turkey," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    7. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    8. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    9. Teye, Collins & Bell, Michael G.H. & Bliemer, Michiel C.J., 2017. "Entropy maximising facility location model for port city intermodal terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 1-16.
    10. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
    11. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    12. Ján Ližbetin, 2019. "Methodology for Determining the Location of Intermodal Transport Terminals for the Development of Sustainable Transport Systems: A Case Study from Slovakia," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    13. Alena Khaslavskaya & Violeta Roso, 2020. "Dry ports: research outcomes, trends, and future implications," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(2), pages 265-292, June.
    14. Witte, Patrick & Wiegmans, Bart & Roso, Violeta & Hall, Peter V., 2020. "Moving beyond land and water: Understanding the development and spatial organization of inland ports," Journal of Transport Geography, Elsevier, vol. 84(C).
    15. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    16. Boysen, Nils & Fliedner, Malte, 2010. "Determining crane areas in intermodal transshipment yards: The yard partition problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 336-342, July.
    17. Basallo-Triana, Mario José & Bravo-Bastidas, Juan José & Vidal-Holguín, Carlos Julio, 2022. "A rail-road transshipment yard picture," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    18. Edvard Tijan & Adrijana Agatić & Marija Jović & Saša Aksentijević, 2019. "Maritime National Single Window—A Prerequisite for Sustainable Seaport Business," Sustainability, MDPI, vol. 11(17), pages 1-21, August.
    19. Josip Božičević & Ivica Lovrić & Dajana Bartulović & Sanja Steiner & Violeta Roso & Jasmina Pašagić Škrinjar, 2021. "Determining Optimal Dry Port Location for Seaport Rijeka Using AHP Decision-Making Methodology," Sustainability, MDPI, vol. 13(11), pages 1-21, June.
    20. Ferrari, Paolo, 2018. "Some necessary conditions for the success of innovations in rail freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 747-758.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4102-:d:252833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.