IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i15p4044-d251957.html
   My bibliography  Save this article

Pre-Disaster Retrofit Decisions for Sustainable Transportation Systems in Urban Areas

Author

Listed:
  • Yingliang Zhou

    (School of Traffic and Transportation Engineering, Central South University, No. 22 South Section Shaoshan Road, Changsha 410075, China)

  • Qiwei Jiang

    (School of Civil Engineering, Central South University, No. 22 South Section Shaoshan Road, Changsha 410075, China)

  • Jin Qin

    (School of Traffic and Transportation Engineering, Central South University, No. 22 South Section Shaoshan Road, Changsha 410075, China)

Abstract

A transportation system is an important material base for implementing timely rescue and emergency evacuation after disasters in urban areas. In order to reduce disaster risks and develop sustainable transportation systems, it is important to improve their resilience and ensure their reliability. This paper mainly studies pre-disaster retrofit decisions for sustainable transportation systems in urban areas. As the optimization goal, pre-disaster retrofit costs and post-disaster restoration costs under constraints of post-disaster system connectivity, travel time reliability, and post-disaster link capacity are taken into account to construct a bi-level stochastic programming model. A method based on the simulated annealing algorithm and Frank–Wolfe algorithm is used to solve the problem. The case study shows that the calculation is quick, and the result is reasonable. The study result proves that the method proposed in this paper can provide an effective solution to such problems.

Suggested Citation

  • Yingliang Zhou & Qiwei Jiang & Jin Qin, 2019. "Pre-Disaster Retrofit Decisions for Sustainable Transportation Systems in Urban Areas," Sustainability, MDPI, vol. 11(15), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4044-:d:251957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/15/4044/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/15/4044/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mingming Xiang & Wei Zhao & Jiao Chen, 2018. "A Comparison of Different Reconstruction Modes and Adaptive Evaluation Systems for Community Recovery Following the Wenchuan Earthquake," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    2. Jin Qin & Wenxuan Qu & Xuanke Wu & Yijia Zeng, 2019. "Differential Pricing Strategies of High Speed Railway Based on Prospect Theory: An Empirical Study from China," Sustainability, MDPI, vol. 11(14), pages 1-17, July.
    3. Tuzun Aksu, Dilek & Ozdamar, Linet, 2014. "A mathematical model for post-disaster road restoration: Enabling accessibility and evacuation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 56-67.
    4. Fukushima, Masao, 1984. "A modified Frank-Wolfe algorithm for solving the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 169-177, April.
    5. Thomas Jamieson & Douglas A. Van Belle, 2019. "How Development Affects News Media Coverage of Earthquakes: Implications for Disaster Risk Reduction in Observing Communities," Sustainability, MDPI, vol. 11(7), pages 1-26, April.
    6. Lili Du & Srinivas Peeta, 2014. "A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through Pre-Disaster Investment Decisions," Networks and Spatial Economics, Springer, vol. 14(2), pages 271-295, June.
    7. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.
    8. Renjie Zhao & Shihu Zhong & Aiping He, 2018. "Disaster Impact, National Aid, and Economic Growth: Evidence from the 2008 Wenchuan Earthquake," Sustainability, MDPI, vol. 10(12), pages 1-22, November.
    9. Nagae, Takeshi & Fujihara, Tomo & Asakura, Yasuo, 2012. "Anti-seismic reinforcement strategy for an urban road network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 813-827.
    10. Yueyue Fan & Changzheng Liu, 2010. "Solving Stochastic Transportation Network Protection Problems Using the Progressive Hedging-based Method," Networks and Spatial Economics, Springer, vol. 10(2), pages 193-208, June.
    11. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    12. Yücel, E. & Salman, F.S. & Arsik, I., 2018. "Improving post-disaster road network accessibility by strengthening links against failures," European Journal of Operational Research, Elsevier, vol. 269(2), pages 406-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyan Wu & Saini Yang & Feng Yang & Xihui Yin, 2021. "Road Weather Monitoring System Shows High Cost-Effectiveness in Mitigating Malfunction Losses," Sustainability, MDPI, vol. 13(22), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    2. Alper Döyen & Necati Aras, 2019. "An Integrated Disaster Preparedness Model for Retrofitting and Relief Item Transportation," Networks and Spatial Economics, Springer, vol. 19(4), pages 1031-1068, December.
    3. Zhang, Guowei & Zhu, Ning & Ma, Shoufeng & Xia, Jun, 2021. "Humanitarian relief network assessment using collaborative truck-and-drone system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    4. Cui, Hongjun & Wang, Fei & Li, Xia & Zhu, Minqing, 2020. "Reinforcement and optimization of seismic connectivity of key transportation hubs based on minimum cost," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    6. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Chang, Kuo-Hao & Hsiung, Tzu-Yi & Chang, Tzu-Yin, 2022. "Multi-Commodity distribution under uncertainty in disaster response phase: Model, solution method, and an empirical study," European Journal of Operational Research, Elsevier, vol. 303(2), pages 857-876.
    8. Zou, Qiling & Chen, Suren, 2021. "Resilience-based Recovery Scheduling of Transportation Network in Mixed Traffic Environment: A Deep-Ensemble-Assisted Active Learning Approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Edrissi, Ali & Nourinejad, Mehdi & Roorda, Matthew J., 2015. "Transportation network reliability in emergency response," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 80(C), pages 56-73.
    10. Stefano Starita & M. Paola Scaparra & Jesse R. O’Hanley, 2017. "A dynamic model for road protection against flooding," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 74-88, January.
    11. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    12. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    13. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    14. Akbari, Vahid & Shiri, Davood & Sibel Salman, F., 2021. "An online optimization approach to post-disaster road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 1-25.
    15. Manjiang Shi & Qi Cao & Baisong Ran & Lanyan Wei, 2021. "A Conceptual Framework Integrating “Building Back Better” and Post-Earthquake Needs for Recovery and Reconstruction," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    16. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    17. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    18. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Masiero, Lorenzo & Maggi, Rico, 2012. "Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor," Transport Policy, Elsevier, vol. 20(C), pages 13-21.
    20. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:15:p:4044-:d:251957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.