IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3592-d244194.html
   My bibliography  Save this article

Pyrolysis and Thermogravimetric Study to Elucidate the Bioenergy Potential of Novel Feedstock Produced on Poor Soils While Keeping the Environmental Sustainability Intact

Author

Listed:
  • Muhammad Sajjad Ahmad

    (Bioenergy Research Centre, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan)

  • Muhammad Aamer Mehmood

    (Bioenergy Research Centre, Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan
    School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China)

  • Huibo Luo

    (School of Bioengineering, Sichuan University of Science and Engineering, Zigong 643000, China)

  • Boxiong Shen

    (School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 430068, China)

  • Muhammad Latif

    (Department of Zoology, University of Education, Faisalabad 38000, Pakistan)

  • Wan Azlina Wan Ab Karim Ghani

    (Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia
    Sustainable Process Engineering Research Center (SPERC), Faculty of Engineering, Universiti Putra Malaysia, Selangor 43400, Malaysia)

  • Nuha Abdulhamid Alkhattabi

    (Biochemistry Department, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

  • Akram Ahmed Aloqbi

    (Biology Department, University of Jeddah, Jeddah 21577, Saudi Arabia)

  • Ebtihaj Jamaluddin Jambi

    (Biochemistry Department, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

  • Munazza Gull

    (Biochemistry Department, King Abdulaziz University, Jeddah 21551, Saudi Arabia)

  • Umer Rashid

    (Institute of Advanced Technology, Universiti Putra Malaysia, Selangor 43400, Malaysia)

Abstract

This work focused on exploring the bioenergy potential of biomass produced on salt-affected soils by growing two types of grasses, namely Parthenium hysterophorus (carrot grass) and Pennesetum benthiumo (mott grass), without using fertilizers or pesticides. The whole plant biomass of both grasses was pyrolyzed at three heating rates (10, 30, and 50 °C min −1 ) in a joined Thermogravimetry–Differential Scanning Calorimetry (TGA–DSC) analyzer under an inert (nitrogen) environment. The pyrolysis of both grasses was shown to occur in a three-stage process, while most of the thermal transformation occurred at the temperature range of 240–400 °C. The pyrolytic behavior was assessed by estimating the kinetic parameters, using the isoconversional models of Kissenger–Akahira–Sunose and Ozawa–Flynn–Wall. The average values of the activation energy of carrot and mott grasses were shown to be 267 kJ mol −1 ( R 2 ≥ 0.98) and 188 kJ mol −1 ( R 2 ≥ 0.98), indicating the suitability of both grasses for co-pyrolysis. Whereas, the difference in the values of enthalpy change and the activation energy was shown to be <~5 kJ mol −1 at each fractional point, which indicated that the product formation was being favored. Moreover, the high heating values of carrot grass (18.25 MJ kg −1 ) and mott grass (18.63 MJ kg −1 ) have shown a remarkable bioenergy potential and suitability of co-pyrolysis for both grasses. This study will lead to establishing an energy-efficient and cost-effective process for the thermal transformation of biomass to bioenergy.

Suggested Citation

  • Muhammad Sajjad Ahmad & Muhammad Aamer Mehmood & Huibo Luo & Boxiong Shen & Muhammad Latif & Wan Azlina Wan Ab Karim Ghani & Nuha Abdulhamid Alkhattabi & Akram Ahmed Aloqbi & Ebtihaj Jamaluddin Jambi , 2019. "Pyrolysis and Thermogravimetric Study to Elucidate the Bioenergy Potential of Novel Feedstock Produced on Poor Soils While Keeping the Environmental Sustainability Intact," Sustainability, MDPI, vol. 11(13), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3592-:d:244194
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maurizio Volpe & Carmelo D'Anna & Simona Messineo & Roberto Volpe & Antonio Messineo, 2014. "Sustainable Production of Bio-Combustibles from Pyrolysis of Agro-Industrial Wastes," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
    2. Slopiecka, Katarzyna & Bartocci, Pietro & Fantozzi, Francesco, 2012. "Thermogravimetric analysis and kinetic study of poplar wood pyrolysis," Applied Energy, Elsevier, vol. 97(C), pages 491-497.
    3. Maria Rosaria Boni & Agostina Chiavola & Simone Marzeddu, 2018. "Application of Biochar to the Remediation of Pb-Contaminated Solutions," Sustainability, MDPI, vol. 10(12), pages 1-14, November.
    4. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N. & Burmester, Daniel, 2021. "Strategic design optimisation of multi-energy-storage-technology micro-grids considering a two-stage game-theoretic market for demand response aggregation," Applied Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parascanu, M.M. & Puig Gamero, M. & Sánchez, P. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2018. "Life cycle assessment of olive pomace valorisation through pyrolysis," Renewable Energy, Elsevier, vol. 122(C), pages 589-601.
    2. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    3. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    4. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    6. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    7. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    8. Xuyao Zhang & Weimin Zhang & Dayu Xu, 2020. "Life Cycle Assessment of Complex Forestry Enterprise: A Case Study of a Forest–Fiberboard Integrated Enterprise," Sustainability, MDPI, vol. 12(10), pages 1-18, May.
    9. Gaballah, Eid S. & Abdelkader, Tarek Kh & Luo, Shuai & Yuan, Qiaoxia & El-Fatah Abomohra, Abd, 2020. "Enhancement of biogas production by integrated solar heating system: A pilot study using tubular digester," Energy, Elsevier, vol. 193(C).
    10. Zhang, Zhiping & Tahir, Nadeem & Li, Yameng & Zhang, Tian & Zhu, Shengnan & Zhang, Quanguo, 2019. "Tailoring of structural and optical parameters of corncobs through ball milling pretreatment," Renewable Energy, Elsevier, vol. 141(C), pages 298-304.
    11. Sharma, Ajay & Aravind Kumar, A. & Mohanty, Bikash & Sawarkar, Ashish N., 2023. "Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Renewable Energy, Elsevier, vol. 210(C), pages 321-334.
    12. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    13. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    14. Beims, R.F. & Simonato, C.L. & Wiggers, V.R., 2019. "Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 521-529.
    15. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    16. Kim, H. & Baek, S. & Won, W., 2022. "Integrative technical, economic, and environmental sustainability analysis for the development process of biomass-derived 2,5-furandicarboxylic acid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    17. Pereira, S. & Costa, M., 2017. "Short rotation coppice for bioenergy: From biomass characterization to establishment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1170-1180.
    18. Taylor-de-Lima, Reynaldo L.N. & Gerbasi da Silva, Arthur José & Legey, Luiz F.L. & Szklo, Alexandre, 2018. "Evaluation of economic feasibility under uncertainty of a thermochemical route for ethanol production in Brazil," Energy, Elsevier, vol. 150(C), pages 363-376.
    19. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Shen, Yafei & Zhao, Peitao & Shao, Qinfu & Takahashi, Fumitake & Yoshikawa, Kunio, 2015. "In situ catalytic conversion of tar using rice husk char/ash supported nickel–iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier," Applied Energy, Elsevier, vol. 160(C), pages 808-819.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3592-:d:244194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.