IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3231-d239010.html
   My bibliography  Save this article

Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content

Author

Listed:
  • Ujué Fresán

    (Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA)

  • Maximino Alfredo Mejia

    (Department of Public Health, Nutrition and Wellness, School of Health Professions, Andrews University, Berrien Springs, MI 49104, USA)

  • Winston J Craig

    (Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
    Department of Public Health, Nutrition and Wellness, School of Health Professions, Andrews University, Berrien Springs, MI 49104, USA)

  • Karen Jaceldo-Siegl

    (Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA)

  • Joan Sabaté

    (Center for Nutrition, Healthy Lifestyles, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA)

Abstract

Meat analogs are processed foods designed to mimic meat products. Their popularity is increasing among people seeking foods that are healthy and sustainable. Animal-sourced protein products differ in both their environmental impact and nutritional composition. The protein sources to produce meat analogs come from different plants. There is a lack of published research data assessing differences in these two aspects of meat analogs according to the plant protein source. This study compared the greenhouse gas (GHG) emissions of different types of meat analogs according to their main source of protein (wheat, soy, wheat and soy, or nuts), and their nutritional composition. We also compared totally plant-based products with those containing egg. We performed life cycle analyses of 56 meat analogs from ingredient production to the final commercial product. The nutrient profile of the meat analogs was analyzed based on ingredients. Descriptive statistics and differences between means were assessed through t -test and ANOVA. No differences in GHG emissions were observed among products with different major sources of protein. However, egg-containing products produced significantly higher amounts of GHG ( p < 0.05). The nutritional composition of all meat analogs was found to be quite similar. Altogether, total plant-based meat analogs should be the choice for the sake of the environment.

Suggested Citation

  • Ujué Fresán & Maximino Alfredo Mejia & Winston J Craig & Karen Jaceldo-Siegl & Joan Sabaté, 2019. "Meat Analogs from Different Protein Sources: A Comparison of Their Sustainability and Nutritional Content," Sustainability, MDPI, vol. 11(12), pages 1-10, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3231-:d:239010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(S1), pages 23-32.
    2. Garnett, Tara, 2011. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?," Food Policy, Elsevier, vol. 36(Supplemen), pages 23-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiboldo, Giulia & Boehm, Rebecca & Shah, Farhed & Moro, Daniele & Castellari, Elena, 2022. "Taxing the heat out of the U.S. food system," Food Policy, Elsevier, vol. 110(C).
    2. Anne Charlotte Bunge & Rachel Mazac & Michael Clark & Amanda Wood & Line Gordon, 2024. "Sustainability benefits of transitioning from current diets to plant-based alternatives or whole-food diets in Sweden," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Diana Bogueva & David Julian McClements, 2023. "Safety and Nutritional Risks Associated with Plant-Based Meat Alternatives," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    4. Pingali, Prabhu & Boiteau, Jocelyn & Choudhry, Abhinav & Hall, Aaron, 2023. "Making meat and milk from plants: A review of plant-based food for human and planetary health," World Development, Elsevier, vol. 170(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorward, Leejiah J., 2012. "Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? A comment," Food Policy, Elsevier, vol. 37(4), pages 463-466.
    2. Yue, Shen & Munir, Irfan Ullah & Hyder, Shabir & Nassani, Abdelmohsen A. & Qazi Abro, Muhammad Moinuddin & Zaman, Khalid, 2020. "Sustainable food production, forest biodiversity and mineral pricing: Interconnected global issues," Resources Policy, Elsevier, vol. 65(C).
    3. Maiyar, Lohithaksha M & Thakkar, Jitesh J, 2019. "Environmentally conscious logistics planning for food grain industry considering wastages employing multi objective hybrid particle swarm optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 220-248.
    4. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    5. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Angela Zinnai & Alberto Pardossi, 2018. "A Reflection of the Use of the Life Cycle Assessment Tool for Agri-Food Sustainability," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    6. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    7. Ancuta Isbasoiu & Pierre-Alain Jayet & Stéphane De Cara, 2021. "Increasing food production and mitigating agricultural greenhouse gas emissions in the European Union: impacts of carbon pricing and calorie production targeting," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 409-440, April.
    8. Susana G. Azevedo & Minelle E. Silva & João C. O. Matias & Gustavo P. Dias, 2018. "The Influence of Collaboration Initiatives on the Sustainability of the Cashew Supply Chain," Sustainability, MDPI, vol. 10(6), pages 1-29, June.
    9. Tjärnemo, Heléne & Södahl, Liv, 2015. "Swedish food retailers promoting climate smarter food choices—Trapped between visions and reality?," Journal of Retailing and Consumer Services, Elsevier, vol. 24(C), pages 130-139.
    10. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    11. Bonnet, Céline & Bouamra-Mechemache, Zohra & Réquillart, Vincent & Treich, Nicolas, 2020. "Viewpoint: Regulating meat consumption to improve health, the environment and animal welfare," Food Policy, Elsevier, vol. 97(C).
    12. Nina Repar & Pierrick Jan & Thomas Nemecek & Dunja Dux & Martina Alig Ceesay & Reiner Doluschitz, 2016. "Local versus Global Environmental Performance of Dairying and Their Link to Economic Performance: A Case Study of Swiss Mountain Farms," Sustainability, MDPI, vol. 8(12), pages 1-19, December.
    13. Panzone, Luca A. & Ulph, Alistair & Zizzo, Daniel John & Hilton, Denis & Clear, Adrian, 2021. "The impact of environmental recall and carbon taxation on the carbon footprint of supermarket shopping," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    14. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    15. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    16. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    17. Halloran, Afton & Clement, Jesper & Kornum, Niels & Bucatariu, Camelia & Magid, Jakob, 2014. "Addressing food waste reduction in Denmark," Food Policy, Elsevier, vol. 49(P1), pages 294-301.
    18. Nathalie Gröfke & Valérie Duplat & Christopher Wickert & Brian Tjemkes, 2021. "A Multi-Stakeholder Perspective on Food Labelling for Environmental Sustainability: Attitudes, Perceived Barriers, and Solution Approaches towards the “Traffic Light Index”," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    19. Shuai Qin & Hong Chen & Haokun Wang, 2021. "Spatial–Temporal Heterogeneity and Driving Factors of Rural Residents’ Food Consumption Carbon Emissions in China—Based on an ESDA-GWR Model," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    20. Mattias Eriksson & Christopher Malefors & Pauline Bergström & Emelie Eriksson & Christine Persson Osowski, 2020. "Quantities and Quantification Methodologies of Food Waste in Swedish Hospitals," Sustainability, MDPI, vol. 12(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3231-:d:239010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.