IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3183-d237800.html
   My bibliography  Save this article

Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas

Author

Listed:
  • Bhaskar Shrestha

    (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Qinghua Ye

    (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    CAS Center for Excellence in Tibetan Plateau Earth Sciences, CAS, Beijing 100101, China)

  • Nitesh Khadka

    (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

Land use and land cover change (LUCC) and its spatio-temporal characteristics are essential for natural resource management and sustainable development. LUCC is one of the major factors that affect the ecosystem and the services it provides. In this study, we used remote sensing techniques and a geographical information system to extract the land cover categories based on the Object-Based Image Analysis (OBIA) technique from Landsat TM/ETM/OLI satellite images in the transboundary Karnali River Basin (KRB, China and Nepal) of central Himalayas from 2000 to 2017. Spatio-temporal integrated methodology—Tupu was used to spatially show the LUCC as well as spatial characteristics of the arisen Tupu and shrunken Tupu. In addition, the ecosystem services value (ESV) were obtained and analyzed for each land cover category. In 2017, forest covered the highest area (33.45%) followed by bare area (30.3%), shrub/grassland (18.49%), agriculture (13.12%), snow/ice (4.32%), waterbody (0.3%) and built-up area (0.04%) in the KRB. From 2000 to 2017, the areas of forest, waterbody and snow/ice have decreased by 0.59, 6.14, and 1072.1 km 2 , respectively. Meanwhile, the areas of shrub/grassland, agriculture, barren land, and built-up categories have increased by 82.21, 1.44, 991.97, and 3.11 km 2 , respectively. These changes in the land cover have led to an increase in the ESV of the basin, especially the increase in shrub/grassland, agriculture, and water bodies (in the higher elevation). The total ESV of the basin was increased by $1.59 × 10 6 from 2000 to 2017. Anthropogenic factors together with natural phenomena drive LUCC in the basin and thus the ESV. The findings of this study could facilitate the basin-level policy formulation to guide future conservation and development management interventions.

Suggested Citation

  • Bhaskar Shrestha & Qinghua Ye & Nitesh Khadka, 2019. "Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3183-:d:237800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3183/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3183/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tandong Yao & Lonnie Thompson & Wei Yang & Wusheng Yu & Yang Gao & Xuejun Guo & Xiaoxin Yang & Keqin Duan & Huabiao Zhao & Baiqing Xu & Jiancheng Pu & Anxin Lu & Yang Xiang & Dambaru B. Kattel & Danie, 2012. "Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings," Nature Climate Change, Nature, vol. 2(9), pages 663-667, September.
    2. Basanta Paudel & Jungang Gao & Yili Zhang & Xue Wu & Shicheng Li & Jianzhong Yan, 2016. "Changes in Cropland Status and Their Driving Factors in the Koshi River Basin of the Central Himalayas, Nepal," Sustainability, MDPI, vol. 8(9), pages 1-17, September.
    3. Sushila Rijal & Bhagawat Rimal & Sean Sloan, 2018. "Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal," Land, MDPI, vol. 7(2), pages 1-13, May.
    4. Caiyao Xu & Lijie Pu & Ming Zhu & Jianguo Li & Xinjian Chen & Xiaohan Wang & Xuefeng Xie, 2016. "Ecological Security and Ecosystem Services in Response to Land Use Change in the Coastal Area of Jiangsu, China," Sustainability, MDPI, vol. 8(8), pages 1-24, August.
    5. Immerzeel, Walter & Stoorvogel, Jetse & Antle, John, 2008. "Can payments for ecosystem services secure the water tower of Tibet," Agricultural Systems, Elsevier, vol. 96(1-3), pages 52-63, March.
    6. Kabir Uddin & Mir Abdul Matin & Sajana Maharjan, 2018. "Assessment of Land Cover Change and Its Impact on Changes in Soil Erosion Risk in Nepal," Sustainability, MDPI, vol. 10(12), pages 1-20, December.
    7. Raju Rai & Yili Zhang & Basanta Paudel & Bipin Kumar Acharya & Laxmi Basnet, 2018. "Land Use and Land Cover Dynamics and Assessing the Ecosystem Service Values in the Trans-Boundary Gandaki River Basin, Central Himalayas," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    2. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    3. Yanru Wang & Xiaojuan Zhang & Peihao Peng, 2021. "Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    4. Changjun Gu & Yili Zhang & Linshan Liu & Lanhui Li & Shicheng Li & Binghua Zhang & Bohao Cui & Mohan Kumar Rai, 2021. "Qualifying Land Use and Land Cover Dynamics and Their Impacts on Ecosystem Service in Central Himalaya Transboundary Landscape Based on Google Earth Engine," Land, MDPI, vol. 10(2), pages 1-21, February.
    5. Hualin Xie & Yanwei Zhang & Yongrok Choi & Fengqin Li, 2020. "A Scientometrics Review on Land Ecosystem Service Research," Sustainability, MDPI, vol. 12(7), pages 1-23, April.
    6. Yanqiong Ye & Jiaen Zhang & Ting Wang & Hui Bai & Xuan Wang & Wei Zhao, 2021. "Changes in Land-Use and Ecosystem Service Value in Guangdong Province, Southern China, from 1990 to 2018," Land, MDPI, vol. 10(4), pages 1-19, April.
    7. Fengran Wei & Mingshun Xiang & Lanlan Deng & Yao Wang & Wenheng Li & Suhua Yang & Zhenni Wu, 2023. "Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
    8. Chettri, Nakul & Aryal, Kamal & Thapa, Sanjan & Uddin, Kabir & Kandel, Pratikshya & Karki, Seema, 2021. "Contribution of ecosystem services to rural livelihoods in a changing landscape: A case study from the Eastern Himalaya," Land Use Policy, Elsevier, vol. 109(C).
    9. Yun Jiang & Guoming Du & Hao Teng & Jun Wang & Haolin Li, 2023. "Multi-Scenario Land Use Change Simulation and Spatial Response of Ecosystem Service Value in Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    2. Cheng Duan & Peili Shi & Minghua Song & Xianzhou Zhang & Ning Zong & Caiping Zhou, 2019. "Land Use and Land Cover Change in the Kailash Sacred Landscape of China," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
    3. Srijana Shrestha & Khem Narayan Poudyal & Nawraj Bhattarai & Mohan B. Dangi & John J. Boland, 2022. "An Assessment of the Impact of Land Use and Land Cover Change on the Degradation of Ecosystem Service Values in Kathmandu Valley Using Remote Sensing and GIS," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    4. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    5. Raju Rai & Yili Zhang & Basanta Paudel & Narendra Raj Khanal, 2019. "Status of Farmland Abandonment and Its Determinants in the Transboundary Gandaki River Basin," Sustainability, MDPI, vol. 11(19), pages 1-18, September.
    6. Bin Huang & Zaijian Yuan & Mingguo Zheng & Yishan Liao & Kim Loi Nguyen & Thi Hong Nguyen & Samran Sombatpanit & Dingqiang Li, 2022. "Soil and Water Conservation Techniques in Tropical and Subtropical Asia: A Review," Sustainability, MDPI, vol. 14(9), pages 1-19, April.
    7. Junhua Yang & Shichang Kang & Deliang Chen & Lin Zhao & Zhenming Ji & Keqin Duan & Haijun Deng & Lekhendra Tripathee & Wentao Du & Mukesh Rai & Fangping Yan & Yuan Li & Robert R. Gillies, 2022. "South Asian black carbon is threatening the water sustainability of the Asian Water Tower," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Skidmore, Samuel & Santos, Paulo & Leimona, Beria, 2012. "Seeing REDD: A Microeconomic Analysis of Carbon Sequestration in Indonesia," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126688, International Association of Agricultural Economists.
    9. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Basanta Paudel & Yili Zhang & Jianzhong Yan & Raju Rai & Lanhui Li & Xue Wu & Prem Sagar Chapagain & Narendra Raj Khanal, 2020. "Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies," Climatic Change, Springer, vol. 158(3), pages 485-502, February.
    11. Manish Mehta & Vinit Kumar & Pankaj Kunmar & Kalachand Sain, 2023. "Response of the Thick and Thin Debris-Covered Glaciers between 1971 and 2019 in Ladakh Himalaya, India—A Case Study from Pensilungpa and Durung-Drung Glaciers," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    12. Antle, John M. & Diagana, Bocar & Stoorvogel, Jetse J. & Valdivia, Roberto O., 2010. "Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-17.
    13. Valdivia, Roberto O. & Antle, John M. & Stoorvogel, Jetse J., 2012. "Coupling the Tradeoff Analysis Model with a market equilibrium model to analyze economic and environmental outcomes of agricultural production systems," Agricultural Systems, Elsevier, vol. 110(C), pages 17-29.
    14. Bohao Cui & Yili Zhang & Linshan Liu & Zehua Xu & Zhaofeng Wang & Changjun Gu & Bo Wei & Dianqing Gong, 2021. "Spatiotemporal Variation in Rainfall Erosivity and Correlation with the ENSO on the Tibetan Plateau since 1971," IJERPH, MDPI, vol. 18(21), pages 1-24, October.
    15. Prakash Singh Thapa & Basanta Raj Adhikari & Rajib Shaw & Diwakar Bhattarai & Seiji Yanai, 2023. "Geomorphological analysis and early warning systems for landslide risk mitigation in Nepalese mid-hills," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1793-1812, June.
    16. Muluberhan Biedemariam & Emiru Birhane & Biadgilgn Demissie & Tewodros Tadesse & Girmay Gebresamuel & Solomon Habtu, 2022. "Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review," Land, MDPI, vol. 11(12), pages 1-21, December.
    17. Xiaoyu Guo & Lei Wang & Lide Tian, 2023. "Spatial distributions and temporal variabilities of the recent Indian Summer Monsoon Northern Boundaries in Tibetan Plateau: analysis of outgoing longwave radiation dataset and precipitation isotopes," Climatic Change, Springer, vol. 176(4), pages 1-20, April.
    18. Bocchiola, D. & Brunetti, L. & Soncini, A. & Polinelli, F. & Gianinetto, M., 2019. "Impact of climate change on agricultural productivity and food security in the Himalayas: A case study in Nepal," Agricultural Systems, Elsevier, vol. 171(C), pages 113-125.
    19. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    20. Daniela Smiraglia & Alice Cavalli & Chiara Giuliani & Francesca Assennato, 2023. "The Increasing Coastal Urbanization in the Mediterranean Environment: The State of the Art in Italy," Land, MDPI, vol. 12(5), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3183-:d:237800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.