IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14559-d1255200.html
   My bibliography  Save this article

Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China

Author

Listed:
  • Fengran Wei

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Mingshun Xiang

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China
    Center for Human Geography of Tibetan Plateau and Its Eastern Slope, Chengdu University of Technology, Chengdu 610059, China)

  • Lanlan Deng

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Yao Wang

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Wenheng Li

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Suhua Yang

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Zhenni Wu

    (College of Tourism and Urban-Rural Planning, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Ecosystem service value (ESV) is a key indicator for evaluating ecosystem services. Thus, a unique quantitative assessment instrument that comprehensively and objectively evaluates ESV is of great significance for protecting regional ecosystems and achieving sustainable development. Based on data for meteorology, hydrology, soil use, and land use, this paper comprehensively employs the InVEST model, spatial autocorrelation, and geographic detectors to study the spatiotemporal characteristics and driving forces of spatial variations in ESV in the upper reaches of the Minjiang River. The results indicate the following: (1) The ecosystem service capacity of the study area has continuously improved, with the ecosystem service value (ESV) increasing by USD 4.078 billion over 20 years. Soil conservation has made the most significant contribution to the growth of ESV, accounting for over 85%. (2) The distribution of ESV exhibits a “lower in the northwest, higher in the southeast” trend. The Moran’s I value for each year exceeds 0.7, indicating characteristics of High–High and Low–Low aggregation. (3) Slope plays a dominant role in causing the spatial differentiation of ESV, contributing 30.9%. Slope is followed by HAI at 19.7% and the urbanization rate at 16.8%. Rainfall has the least impact at 4%. (4) The results from the multi-factorial interactions reveal that all factors experience synergistic enhancement effects when interacting. The spatiotemporal differentiation of ESV is the result of multiple factors acting in conjunction, underscoring the importance of coordinated efforts in ecological restoration and comprehensive environmental management in the upper reaches of the Minjiang River. The methodology of this research could be applied to assess the impact of natural changes and human activities on ESV. The findings offer theoretical support for regional resource and environmental management, as well as ecological compensation decision making.

Suggested Citation

  • Fengran Wei & Mingshun Xiang & Lanlan Deng & Yao Wang & Wenheng Li & Suhua Yang & Zhenni Wu, 2023. "Spatiotemporal Distribution Characteristics and Their Driving Forces of Ecological Service Value in Transitional Geospace: A Case Study in the Upper Reaches of the Minjiang River, China," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14559-:d:1255200
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhaskar Shrestha & Qinghua Ye & Nitesh Khadka, 2019. "Assessment of Ecosystem Services Value Based on Land Use and Land Cover Changes in the Transboundary Karnali River Basin, Central Himalayas," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    2. Md. Mostafizur Rahman & György Szabó, 2021. "Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh," Land, MDPI, vol. 10(8), pages 1-27, July.
    3. Costanza, Robert & de Groot, Rudolf & Braat, Leon & Kubiszewski, Ida & Fioramonti, Lorenzo & Sutton, Paul & Farber, Steve & Grasso, Monica, 2017. "Twenty years of ecosystem services: How far have we come and how far do we still need to go?," Ecosystem Services, Elsevier, vol. 28(PA), pages 1-16.
    4. Richardson, Leslie & Loomis, John & Kroeger, Timm & Casey, Frank, 2015. "The role of benefit transfer in ecosystem service valuation," Ecological Economics, Elsevier, vol. 115(C), pages 51-58.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. Lei Yang & Fenglian Liu, 2022. "Spatio-Temporal Evolution and Driving Factors of Ecosystem Service Value of Urban Agglomeration in Central Yunnan," Sustainability, MDPI, vol. 14(17), pages 1-20, August.
    7. Wang, Xuechao & Dong, Xiaobin & Liu, Huiming & Wei, Hejie & Fan, Weiguo & Lu, Nachuan & Xu, Zihan & Ren, Jiahui & Xing, Kaixiong, 2017. "Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China," Ecosystem Services, Elsevier, vol. 27(PA), pages 113-123.
    8. Gashaw, Temesgen & Tulu, Taffa & Argaw, Mekuria & Worqlul, Abeyou W. & Tolessa, Terefe & Kindu, Mengistie, 2018. "Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia," Ecosystem Services, Elsevier, vol. 31(PA), pages 219-228.
    9. Kubiszewski, Ida & Costanza, Robert & Anderson, Sharolyn & Sutton, Paul, 2017. "The future value of ecosystem services: Global scenarios and national implications," Ecosystem Services, Elsevier, vol. 26(PA), pages 289-301.
    10. Mohammad Naser Sediqi & Mohammed Sanusi Shiru & Mohamed Salem Nashwan & Rawshan Ali & Shadan Abubaker & Xiaojun Wang & Kamal Ahmed & Shamsuddin Shahid & Md. Asaduzzaman & Sayed Mir Agha Manawi, 2019. "Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyi Zhang & Liusheng Han & Zhaohui Feng & Jian Zhou & Shengshuai Wang & Xiangyu Wang & Junfu Fan, 2024. "Estimating the Past and Future Trajectory of LUCC on Wetland Ecosystem Service Values in the Yellow River Delta Region of China," Sustainability, MDPI, vol. 16(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Zhang & Jian Ji, 2022. "Spatiotemporal Differentiation of Ecosystem Service Value and Its Drivers in the Jiangsu Coastal Zone, Eastern China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    2. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    3. Lu Jiao & Rui Yang & Yinling Zhang & Jian Yin & Jiayu Huang, 2022. "The Evolution and Determinants of Ecosystem Services in Guizhou—A Typical Karst Mountainous Area in Southwest China," Land, MDPI, vol. 11(8), pages 1-23, July.
    4. Hualin Xie & Zhenhong Zhu & Zhe Li, 2022. "Spatial Divergence Analysis of Ecosystem Service Value in Hilly Mountainous Areas: A Case Study of Ruijin City," Land, MDPI, vol. 11(6), pages 1-17, May.
    5. Gashaw, Temesgen & Tulu, Taffa & Argaw, Mekuria & Worqlul, Abeyou W. & Tolessa, Terefe & Kindu, Mengistie, 2018. "Estimating the impacts of land use/land cover changes on Ecosystem Service Values: The case of the Andassa watershed in the Upper Blue Nile basin of Ethiopia," Ecosystem Services, Elsevier, vol. 31(PA), pages 219-228.
    6. Fenta, Ayele Almaw & Tsunekawa, Atsushi & Haregeweyn, Nigussie & Tsubo, Mitsuru & Yasuda, Hiroshi & Shimizu, Katsuyuki & Kawai, Takayuki & Ebabu, Kindiye & Berihun, Mulatu Liyew & Sultan, Dagnenet & B, 2020. "Cropland expansion outweighs the monetary effect of declining natural vegetation on ecosystem services in sub-Saharan Africa," Ecosystem Services, Elsevier, vol. 45(C).
    7. Muhammad Zaman-ul-Haq & Ambrina Kanwal & Akber Abid Gardezi & Hina Fatima & Zafeer Saqib & Syed Atif Bokhari & Emad Abouel Nasr & Shafiq Ahmad & Muhammad Shafiq, 2022. "Assessing Spatial-Temporal Changes in Monetary Values of Urban Ecosystem Services through Remotely Sensed Data," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    8. Anna M. Hansson & Eja Pedersen & Niklas P. E. Karlsson & Stefan E. B. Weisner, 2023. "Barriers and drivers for sustainable business model innovation based on a radical farmland change scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 8083-8106, August.
    9. Chen, Haojie, 2020. "Complementing conventional environmental impact assessments of tourism with ecosystem service valuation: A case study of the Wulingyuan Scenic Area, China," Ecosystem Services, Elsevier, vol. 43(C).
    10. Fuli Wang & Wei Fu & Jiancheng Chen, 2022. "Spatial–Temporal Evolution of Ecosystem Service Value in Yunnan Based on Land Use," Land, MDPI, vol. 11(12), pages 1-15, December.
    11. Luo, Xiangyu & Jiang, Peng & Yang, Jingyi & Jin, Jing & Yang, Jun, 2021. "Simulating PM2.5 removal in an urban ecosystem based on the social-ecological model framework," Ecosystem Services, Elsevier, vol. 47(C).
    12. Henghui Xi & Wanglai Cui & Li Cai & Mengyuan Chen & Chenglei Xu, 2021. "Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    13. Yun Jiang & Guoming Du & Hao Teng & Jun Wang & Haolin Li, 2023. "Multi-Scenario Land Use Change Simulation and Spatial Response of Ecosystem Service Value in Black Soil Region of Northeast China," Land, MDPI, vol. 12(5), pages 1-21, April.
    14. Buckwell, Andrew & Fleming, Christopher & Smart, James & Mackey, Brendan & Ware, Daniel & Hallgren, Willow & Sahin, Oz & Nalau, Johanna, 2018. "Valuing aggregated ecosystem services at a national and regional scale for Vanuatu using a remotely operable, rapid assessment methodology," 2018 Conference (62nd), February 7-9, 2018, Adelaide, Australia 273524, Australian Agricultural and Resource Economics Society.
    15. Jiang, Wei & Wu, Tong & Fu, Bojie, 2021. "The value of ecosystem services in China: A systematic review for twenty years," Ecosystem Services, Elsevier, vol. 52(C).
    16. Yanru Wang & Xiaojuan Zhang & Peihao Peng, 2021. "Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    17. Shuming Ma & Jie Huang & Yingying Chai, 2021. "Proposing a GEE-Based Spatiotemporally Adjusted Value Transfer Method to Assess Land-Use Changes and Their Impacts on Ecosystem Service Values in the Shenyang Metropolitan Area," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    18. Niccolucci, Valentina & Coscieme, Luca & Marchettini, Nadia, 2021. "Benefit transfer and the economic value of Biocapacity: Introducing the ecosystem service Yield factor," Ecosystem Services, Elsevier, vol. 48(C).
    19. Jiang, Hongqiang & Wu, Wenjun & Wang, Jinnan & Yang, Weishan & Gao, Yueming & Duan, Yang & Ma, Guoxia & Wu, Chunsheng & Shao, Jiacheng, 2021. "Mapping global value of terrestrial ecosystem services by countries," Ecosystem Services, Elsevier, vol. 52(C).
    20. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14559-:d:1255200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.