IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i9p3205-d168424.html
   My bibliography  Save this article

Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation

Author

Listed:
  • Xiaochao Su

    (Underground Space Research Center, Army Engineering University of PLA, Nanjing 210007, China
    State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China)

  • Zhilong Chen

    (Underground Space Research Center, Army Engineering University of PLA, Nanjing 210007, China
    State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China)

  • Xudong Zhao

    (State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China)

  • Xiaobin Yang

    (Underground Space Research Center, Army Engineering University of PLA, Nanjing 210007, China
    Engineering Design and Research Institute of PLA Army Research Institute, Beijing 100000, China)

  • Qilin Feng

    (State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China)

  • Haizhou Tang

    (Underground Space Research Center, Army Engineering University of PLA, Nanjing 210007, China
    State Key Laboratory of Explosion & Impact and Disaster Prevention & Mitigation, Army Engineering University of PLA, Nanjing 210007, China)

Abstract

Reasonable design of the overburden thickness of underground space (OTUS) can influence the outdoor thermal environment by affecting the ground plant communities. To optimize the design of the OTUS for improving the outdoor thermal environment, this study summarized the influence mechanism of the OTUS on the outdoor thermal environment and proposed a framework of the optimization design of underground space overburden thickness. A typical row layout residential area in Nanjing, China, was taken as the research object on which to perform a numerical study of the influence of plant communities formed by two types of plant collocations (a middle- and low-level plant collocation and a middle- and high-level plant collocation) on the outdoor thermal environment (airflow field, air temperature, relative humidity and thermal comfort) under three different ratios of trees to shrubs (2:3, 1:2, and 1:3), and to provide suggestions regarding the design of the OTUS according to the designer’s requirements. The conclusions were summarized as follows: (1) If a designer wants to enhance outdoor ventilation, the OTUS should be designed to satisfy the requirements for the middle- and low-level plant collocations and the overburden thickness of the 2/5 underground space development area should be set to 80~100 cm, the overburden thickness of the other 2/5 area should be set to 45~60 cm and the overburden thickness of the remaining 1/5 area should be set to 30~45 cm. (2) If a designer wants to reduce air temperature, increase relative humidity, and improve outdoor thermal comfort, the OTUS should be designed to satisfy the requirements for middle- and high-level plant collocations and the overburden thickness of the 1/4 underground space development area should be set to 80~100 cm, and the overburden thickness of the remaining 3/4 area should be set to 45~60 cm.

Suggested Citation

  • Xiaochao Su & Zhilong Chen & Xudong Zhao & Xiaobin Yang & Qilin Feng & Haizhou Tang, 2018. "Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3205-:d:168424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/9/3205/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/9/3205/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaochao Su & Hao Cai & Zhilong Chen & Qilin Feng, 2017. "Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses," Sustainability, MDPI, vol. 9(9), pages 1-19, September.
    2. Vandentorren, S. & Suzan, F. & Medina, S. & Pascal, M. & Maulpoix, A. & Cohen, J.-C. & Ledrans, M., 2004. "Mortality in 13 French cities during the August 2003 heat wave," American Journal of Public Health, American Public Health Association, vol. 94(9), pages 1518-1520.
    3. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    4. Hong, Bo & Lin, Borong, 2015. "Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement," Renewable Energy, Elsevier, vol. 73(C), pages 18-27.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoling Cheng & Xudong Zhao & Qiaoyi He & Xiaochao Su, 2022. "The Negative Influence of Urban Underground Space Development on Urban Microclimate," Sustainability, MDPI, vol. 14(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaochao Su & Hao Cai & Zhilong Chen & Qilin Feng, 2017. "Influence of the Ground Greening Configuration on the Outdoor Thermal Environment in Residential Areas under Different Underground Space Overburden Thicknesses," Sustainability, MDPI, vol. 9(9), pages 1-19, September.
    2. Xiaoling Cheng & Xudong Zhao & Qiaoyi He & Xiaochao Su, 2022. "The Negative Influence of Urban Underground Space Development on Urban Microclimate," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    3. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    4. Jian Peng & An Wang & Yanxu Liu & Weidong Liu, 2015. "Assessing the Atmospheric Oxygen Balance in a Region of Rapid Urbanization: A Case Study in the Pearl River Delta, China," Sustainability, MDPI, vol. 7(10), pages 1-18, September.
    5. Vaneckova, Pavla & Beggs, Paul J. & Jacobson, Carol R., 2010. "Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia," Social Science & Medicine, Elsevier, vol. 70(2), pages 293-304, January.
    6. Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
    7. Chen, Ping-Yu & Chen, Chi-Chung & Chang, Chia-Lin, 2011. "Multiple Threshold Effects for Temperature and Mortality," MPRA Paper 35521, University Library of Munich, Germany.
    8. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    9. Sue Smith & Alex J. Elliot & Shakoor Hajat & Angie Bone & Chris Bates & Gillian E. Smith & Sari Kovats, 2016. "The Impact of Heatwaves on Community Morbidity and Healthcare Usage: A Retrospective Observational Study Using Real-Time Syndromic Surveillance," IJERPH, MDPI, vol. 13(1), pages 1-12, January.
    10. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    11. Soo-yeon Seo & Byunghee Lee & Jongsung Won, 2020. "Comparative Analysis of Economic Impacts of Sustainable Vertical Extension Methods for Existing Underground Spaces," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    12. R. Sari Kovats & Diarmid Campbell‐Lendrum & Franziska Matthies, 2005. "Climate Change and Human Health: Estimating Avoidable Deaths and Disease," Risk Analysis, John Wiley & Sons, vol. 25(6), pages 1409-1418, December.
    13. Umberto Berardi & Yupeng Wang, 2016. "The Effect of a Denser City over the Urban Microclimate: The Case of Toronto," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    14. Boris Revich & Simon Avaliani & Gregory John Simons, 2016. "Air Pollution And Public Health In A Megalopolis: A Case Study Of Moscow," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 1069-1078.
    15. Hong Jin & Zheming Liu & Yumeng Jin & Jian Kang & Jing Liu, 2017. "The Effects of Residential Area Building Layout on Outdoor Wind Environment at the Pedestrian Level in Severe Cold Regions of China," Sustainability, MDPI, vol. 9(12), pages 1-18, December.
    16. Hongqiao Qin & Bo Hong & Runsheng Jiang, 2018. "Are Green Walls Better Options than Green Roofs for Mitigating PM 10 Pollution? CFD Simulations in Urban Street Canyons," Sustainability, MDPI, vol. 10(8), pages 1-21, August.
    17. Heli Lu & Menglin Xia & Ziyuan Qin & Siqi Lu & Ruimin Guan & Yuna Yang & Changhong Miao & Taizheng Chen, 2022. "The Built Environment Assessment of Residential Areas in Wuhan during the Coronavirus Disease (COVID-19) Outbreak," IJERPH, MDPI, vol. 19(13), pages 1-20, June.
    18. Steffen Merte, 2017. "Estimating heat wave-related mortality in Europe using singular spectrum analysis," Climatic Change, Springer, vol. 142(3), pages 321-330, June.
    19. Yingling Shi & Xinping Liu, 2019. "Research on the Literature of Green Building Based on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018)," Sustainability, MDPI, vol. 11(13), pages 1-22, July.
    20. You Jin Kwon & Dong Kun Lee & Kiseung Lee, 2019. "Determining Favourable and Unfavourable Thermal Areas in Seoul Using In-Situ Measurements: A Preliminary Step towards Developing a Smart City," Energies, MDPI, vol. 12(12), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:9:p:3205-:d:168424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.