IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6602-d462028.html
   My bibliography  Save this article

Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China

Author

Listed:
  • Hui Chen

    (College of Architecture, Hunan University, Changsha 410082, China
    National Center for International Research Collaboration in Building Safety and Environment, College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Yin Wei

    (College of Architecture, Hunan University, Changsha 410082, China
    School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, China)

  • Yaolin Lin

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Wei Yang

    (Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne 3010, Australia)

  • Xiaoming Chen

    (College of Architecture, Hunan University, Changsha 410082, China)

  • Maria Kolokotroni

    (Mechanical and Aerospace Engineering Department, Brunel University London, Brunel UB8 3PH, UK)

  • Xiaohong Liu

    (College of Architecture, Hunan University, Changsha 410082, China)

  • Guoqiang Zhang

    (College of Architecture, Hunan University, Changsha 410082, China
    National Center for International Research Collaboration in Building Safety and Environment, College of Civil Engineering, Hunan University, Changsha 410082, China)

Abstract

A Chinese traditional narrow street, named Cold-Lane, can create a microclimatic zone that provides pedestrian thermal comfort under hot and humid climate conditions. This phenomenon was observed through experimental measurement during the summer of 2016. The heat transfer rate over the pedestrian body surface was calculated to reveal why pedestrians experience a cool sensation, and computational flow dynamics (CFD) simulation was carried out to study the influence of the street aspect ratio on the shading effect. It was found that the perception of thermal comfort can be attributed mainly to the radiation between the relatively cool surrounding walls and the human body, and the wind velocity has little effect on sensible heat dissipation. The cool horizontal and vertical surfaces in the street canyon are mainly due to the shading effect as a result of the small aspect ratio, which is a typical characteristic of the traditional Chinese street. The shading effect of the high walls on both sides creates the cooling effect of this narrow street.

Suggested Citation

  • Hui Chen & Yin Wei & Yaolin Lin & Wei Yang & Xiaoming Chen & Maria Kolokotroni & Xiaohong Liu & Guoqiang Zhang, 2020. "Investigation on the Thermal Condition of a Traditional Cold-Lane in Summer in Subtropical Humid Climate Region of China," Energies, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6602-:d:462028
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6602/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6602/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamei, Elmira & Rajagopalan, Priyadarsini & Seyedmahmoudian, Mohammadmehdi & Jamei, Yashar, 2016. "Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1002-1017.
    2. Hong, Bo & Lin, Borong, 2015. "Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement," Renewable Energy, Elsevier, vol. 73(C), pages 18-27.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toparlar, Y. & Blocken, B. & Maiheu, B. & van Heijst, G.J.F., 2017. "A review on the CFD analysis of urban microclimate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1613-1640.
    2. Xiang Liu & Wanjiang Wang & Zixuan Wang & Junkang Song & Ke Li, 2023. "Simulation Study on Outdoor Wind Environment of Residential Complexes in Hot-Summer and Cold-Winter Climate Zones Based on Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(16), pages 1-28, August.
    3. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    4. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    5. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    6. Liuying Wang & Gaoyuan Wang & Tian Chen & Junnan Liu, 2023. "The Regulating Effect of Urban Large Planar Water Bodies on Residential Heat Islands: A Case Study of Meijiang Lake in Tianjin," Land, MDPI, vol. 12(12), pages 1-22, December.
    7. Jamei, E. & Ossen, D.R. & Seyedmahmoudian, M. & Sandanayake, M. & Stojcevski, A. & Horan, B., 2020. "Urban design parameters for heat mitigation in tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    9. Javanroodi, Kavan & Mahdavinejad, Mohammadjavad & Nik, Vahid M., 2018. "Impacts of urban morphology on reducing cooling load and increasing ventilation potential in hot-arid climate," Applied Energy, Elsevier, vol. 231(C), pages 714-746.
    10. Xiaobin Yang & Zhilong Chen & Hao Cai & Linjian Ma, 2014. "A Framework for Assessment of the Influence of China’s Urban Underground Space Developments on the Urban Microclimate," Sustainability, MDPI, vol. 6(12), pages 1-31, November.
    11. Bo Hong & Hongqiao Qin & Runsheng Jiang & Min Xu & Jiaqi Niu, 2018. "How Outdoor Trees Affect Indoor Particulate Matter Dispersion: CFD Simulations in a Naturally Ventilated Auditorium," IJERPH, MDPI, vol. 15(12), pages 1-21, December.
    12. Komi Bernard Bedra & Bohong Zheng & Jiayu Li & Xi Luo, 2023. "A Parametric-Simulation Method to Study the Interconnections between Urban-Street-Morphology Indicators and Their Effects on Pedestrian Thermal Comfort in Tropical Summer," Sustainability, MDPI, vol. 15(11), pages 1-23, May.
    13. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    14. Tianyu Xi & Huan Qin & Weiqing Xu & Tong Yang & Chenxin Hu & Caiyi Zhao & Haoshun Wang, 2023. "Constantly Tracking and Investigating People’s Physical, Psychological, and Thermal Responses in Relation to Park Strolling in a Severe Cold Region of China—A Case Study of Stalin Waterfront Park," Sustainability, MDPI, vol. 15(9), pages 1-28, April.
    15. Yingjie Jiang & Changguang Wu & Mingjun Teng, 2020. "Impact of Residential Building Layouts on Microclimate in a High Temperature and High Humidity Region," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    16. Jie-Sheng Lin & Faye Ya-Fen Chan & Jason Leung & Blanche Yu & Zhi-Hui Lu & Jean Woo & Timothy Kwok & Kevin Ka-Lun Lau, 2020. "Longitudinal Association of Built Environment Pattern with Physical Activity in a Community-Based Cohort of Elderly Hong Kong Chinese: A Latent Profile Analysis," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    17. Kleerekoper, Laura & Taleghani, Mohammad & van den Dobbelsteen, Andy & Hordijk, Truus, 2017. "Urban measures for hot weather conditions in a temperate climate condition: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 515-533.
    18. Xiaochao Su & Zhilong Chen & Xudong Zhao & Xiaobin Yang & Qilin Feng & Haizhou Tang, 2018. "Optimization Design of Underground Space Overburden Thickness in a Residential Area Concerning Outdoor Thermal Environment Evaluation," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    19. Ying Zhang & Xijun Hu & Zheng Liu & Chunling Zhou & Hong Liang, 2022. "A Greening Strategy of Mitigation of the Thermal Environment for Coastal Sloping Urban Space," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    20. Milena Vuckovic & Kristina Kiesel & Ardeshir Mahdavi, 2017. "The Extent and Implications of the Microclimatic Conditions in the Urban Environment: A Vienna Case Study," Sustainability, MDPI, vol. 9(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6602-:d:462028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.