IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1935-d151577.html
   My bibliography  Save this article

A Method for Monitoring Iron and Steel Factory Economic Activity Based on Satellites

Author

Listed:
  • Yi Zhou

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Fei Zhao

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Shixin Wang

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Wenliang Liu

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Litao Wang

    (Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The Chinese government has promulgated a de-capacity policy for economic growth and environmental sustainability, especially for the iron and steel industry. With these policies, this study aimed to monitor the economic activities and evaluate the production conditions of an iron and steel factory based on satellites via Landsat-8 Thermal Infrared Sensor (TIRS) data and high-resolution images from January 2013 to October 2017, and propel next economic adjustment and environmental protection. Our methods included the construction of a heat island intensity index for an iron and steel factory (ISHII), a heat island radio index for an iron and steel factory (ISHRI) and a dense classifying approach to monitor the spatiotemporal changes of the internal heat field of an iron and steel factory. Additionally, we used GF-2 and Google Earth images to identify the main production area, detect facility changes to a factory that alters its heat field and verify the accuracy of thermal analysis in a specific time span. Finally, these methods were used together to evaluate economic activity. Based on five iron and steel factories in the Beijing-Tianjin-Hebei region, when the ISHII curve is higher than the seasonal changes in a time series, production is normal; otherwise, there is a shut-down or cut-back. In the spatial pattern analyses, the ISHRI is large in normal production and decreases when cut-back or shut-down occurs. The density classifying images and high-resolution images give powerful evidence to the above-mentioned results. Finally, three types of economic activities of normal production, shut-down or cut-back were monitored for these samples. The study provides a new perspective and method for monitoring the economic activity of an iron and steel factory and provides supports for sustainable development in China.

Suggested Citation

  • Yi Zhou & Fei Zhao & Shixin Wang & Wenliang Liu & Litao Wang, 2018. "A Method for Monitoring Iron and Steel Factory Economic Activity Based on Satellites," Sustainability, MDPI, vol. 10(6), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1935-:d:151577
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1935/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1935/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. André Martinuzzi & Vincent Blok & Alexander Brem & Bernd Stahl & Norma Schönherr, 2018. "Responsible Research and Innovation in Industry—Challenges, Insights and Perspectives," Sustainability, MDPI, vol. 10(3), pages 1-9, March.
    2. Mert, Mehmet Selçuk & Dilmaç, Ömer Faruk & Özkan, Semra & Karaca, Fatma & Bolat, Esen, 2012. "Exergoeconomic analysis of a cogeneration plant in an iron and steel factory," Energy, Elsevier, vol. 46(1), pages 78-84.
    3. Doll, Christopher N.H. & Muller, Jan-Peter & Morley, Jeremy G., 2006. "Mapping regional economic activity from night-time light satellite imagery," Ecological Economics, Elsevier, vol. 57(1), pages 75-92, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Han & Fei Zhao & Fuxing Li & Xiaoli Shi & Qiang Wei & Weimiao Li & Wei Wang, 2023. "Improvement of Monitoring Production Status of Iron and Steel Factories Based on Thermal Infrared Remote Sensing," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    2. Caihong Ma & Xin Sui & Yi Zeng & Jin Yang & Yanmei Xie & Tianzhu Li & Pengyu Zhang, 2022. "Classification of Industrial Heat Source Objects Based on Active Fire Point Density Segmentation and Spatial Topological Correlation Analysis in the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    3. Caihong Ma & Jin Yang & Fu Chen & Yan Ma & Jianbo Liu & Xinpeng Li & Jianbo Duan & Rui Guo, 2018. "Assessing Heavy Industrial Heat Source Distribution in China Using Real-Time VIIRS Active Fire/Hotspot Data," Sustainability, MDPI, vol. 10(12), pages 1-17, November.
    4. Zhang, Rui & Qie, Xiaotong & Hu, Yanyong & Chen, Xue, 2022. "Does de-capacity policy promote the efficient and green development of the coal industry? –Based on the evidence of China," Resources Policy, Elsevier, vol. 77(C).
    5. Wengang Zhang & Feng Xu & Xuefeng Wang, 2020. "How Green Transformational Leadership Affects Green Creativity: Creative Process Engagement as Intermediary Bond and Green Innovation Strategy as Boundary Spanner," Sustainability, MDPI, vol. 12(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lehoux, P. & Miller, F.A. & Williams-Jones, B., 2020. "Anticipatory governance and moral imagination: Methodological insights from a scenario-based public deliberation study," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    2. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    3. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    4. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    5. Asta Valackienė & Rafał Nagaj, 2021. "Shared Taxonomy for the Implementation of Responsible Innovation Approach in Industrial Ecosystems," Sustainability, MDPI, vol. 13(17), pages 1-21, September.
    6. Oier Imaz & Andoni Eizagirre, 2020. "Responsible Innovation for Sustainable Development Goals in Business: An Agenda for Cooperative Firms," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    7. Shao, Shuai & Zhang, Xuebin & Yang, Lili, 2023. "Natural resource dependence and urban shrinkage: The role of human capital accumulation," Resources Policy, Elsevier, vol. 81(C).
    8. Leonardo Bonilla-Mejía & Iván Higuera-Mendieta, 2017. "Political Alignment in the Time of Weak Parties: Electoral Advantages and Subnational Transfers in Colombia," Documentos de Trabajo Sobre Economía Regional y Urbana 15746, Banco de la República, Economía Regional.
    9. Brock, Gregory, 2015. "The informal economy of Rostov Oblast on the eve of the Ukrainian refugee crisis," Journal of Policy Modeling, Elsevier, vol. 37(5), pages 789-803.
    10. Aghaei, Ali Tavakkol & Saray, Rahim Khoshbakhti, 2021. "Optimization of a combined cooling, heating, and power (CCHP) system with a gas turbine prime mover: A case study in the dairy industry," Energy, Elsevier, vol. 229(C).
    11. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    12. Bauer, Vincent & Platas, Melina R. & Weinstein, Jeremy M., 2022. "Legacies of Islamic Rule in Africa: Colonial Responses and Contemporary Development," World Development, Elsevier, vol. 152(C).
    13. Anna Bruederle & Roland Hodler, 2018. "Nighttime lights as a proxy for human development at the local level," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-22, September.
    14. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    15. Phoebe W. Ishak & Pierre-Guillaume Méon, 2020. "A resource-rich neighbor is a misfortune: The spatial distribution of the resource curse in Brazil," Working Papers CEB 20-001, ULB -- Universite Libre de Bruxelles.
    16. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    17. Qian Chen & Tingting Ye & Naizhuo Zhao & Mingjun Ding & Zutao Ouyang & Peng Jia & Wenze Yue & Xuchao Yang, 2021. "Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environment and Planning B, , vol. 48(7), pages 1876-1894, September.
    18. Yuanzheng Cui & Lei Jiang & Weishi Zhang & Haijun Bao & Bin Geng & Qingqing He & Long Zhang & David G. Streets, 2019. "Evaluation of China’s Environmental Pressures Based on Satellite NO 2 Observation and the Extended STIRPAT Model," IJERPH, MDPI, vol. 16(9), pages 1-16, April.
    19. Maconga, Carson W., 2023. "Arid fields where conflict grows: How drought drives extremist violence in Sub-Saharan Africa," World Development Perspectives, Elsevier, vol. 29(C).
    20. Nonso Obikili, 2015. "An Examination of Subnational Growth in Nigeria: 1999-2012," South African Journal of Economics, Economic Society of South Africa, vol. 83(3), pages 335-356, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1935-:d:151577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.