IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p305-d128566.html
   My bibliography  Save this article

Analysis of Blue and Green Water Consumption at the Irrigation District Scale

Author

Listed:
  • Jing Liu

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Xinchun Cao

    (College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China)

  • Binquan Li

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Zhongbo Yu

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

Abstract

The concepts of virtual water and water footprint bring a new perspective for water management. Previous studies mainly focus on one type of water and the relationship between water footprint and water availability. In this study, three indicators were proposed to show water consumption and the influences of virtual water flows at the Hetao irrigation district, China, during 2001–2010, considering both blue and green water. Results indicate that the ratio of blue water footprint and blue water availability was 0.642 in 2010 and the value for green water was 0.148, coefficients on contribution of regional production on consumption in other areas were about 0.9, and coefficients on influences of trades from other regions to the district on regional water consumption were 0.528 (blue water) and 0.433 (green water), respectively. Government should promote water pricing policies that can encourage the adoption of irrigation technologies and water-saving practices. Besides, the adjustment of the crop sowing date or the cultivation of new varieties may be helpful in using more rainfall. Lastly, a compensation mechanism for virtual water export should be built in the future, and virtual water importing can be advocated. Before actions are taken, the possible influences and related constraints should be considered.

Suggested Citation

  • Jing Liu & Xinchun Cao & Binquan Li & Zhongbo Yu, 2018. "Analysis of Blue and Green Water Consumption at the Irrigation District Scale," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:305-:d:128566
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/305/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Y.B. & Liu, D. & Cao, X.C. & Yang, Z.Y. & Song, J.F. & Chen, D.Y. & Sun, S.K., 2017. "Agricultural water rights trading and virtual water export compensation coupling model: A case study of an irrigation district in China," Agricultural Water Management, Elsevier, vol. 180(PA), pages 99-106.
    2. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    3. Rajagopal, 2014. "Technology Diffusion and Adoption," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 6, pages 148-173, Palgrave Macmillan.
    4. Margarita Genius & Phoebe Koundouri & Céline Nauges & Vangelis Tzouvelekas, 2014. "Information Transmission in Irrigation Technology Adoption and Diffusion: Social Learning, Extension Services, and Spatial Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(1), pages 328-344.
    5. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subramaniam, Vijaya & Hashim, Zulkifli & Loh, Soh Kheang & Astimar, Abdul Aziz, 2020. "Assessing water footprint for the oil palm supply chain- a cradle to gate study," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Dong Yan & Zhiwei Jia & Jie Xue & Huaiwei Sun & Dongwei Gui & Yi Liu & Xiaofan Zeng, 2018. "Inter-Regional Coordination to Improve Equality in the Agricultural Virtual Water Trade," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Jing Liu & Yu Zhang & Zhongbo Yu, 2018. "Evaluation of Physical and Economic Water-Saving Efficiency for Virtual Water Flows Related to Inter-Regional Crop Trade in China," Sustainability, MDPI, vol. 10(11), pages 1-10, November.
    4. Jing Liu & Mengyang Wu & Zhongbo Yu, 2018. "Evaluation of Environmental Impacts Due to Blue Water Consumption in China from Production and Consumption Perspectives," IJERPH, MDPI, vol. 15(11), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mekonnen, Dawit K. & Dorfman, Jeffrey H., 2017. "Synergy and Learning Effects of Informal Labor-Sharing Arrangements," World Development, Elsevier, vol. 99(C), pages 1-14.
    2. Linda Steinhübel & Johannes Wegmann & Oliver Mußhoff, 2020. "Digging deep and running dry—the adoption of borewell technology in the face of climate change and urbanization," Agricultural Economics, International Association of Agricultural Economists, vol. 51(5), pages 685-706, September.
    3. Enid M. Katungi & Catherine Larochelle & Josephat R. Mugabo & Robin Buruchara, 2018. "The effect of climbing bean adoption on the welfare of smallholder common bean growers in Rwanda," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(1), pages 61-79, February.
    4. Gabriel S. Sampson & Edward D. Perry, 2019. "Peer effects in the diffusion of water‐saving agricultural technologies," Agricultural Economics, International Association of Agricultural Economists, vol. 50(6), pages 693-706, November.
    5. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2016. "The effect of improved storage innovations on food security and welfare in Ethiopia," MERIT Working Papers 2016-063, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    6. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    7. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    8. Gobillon, Laurent & Wolff, François-Charles, 2020. "The local effects of an innovation: Evidence from the French fish market," Ecological Economics, Elsevier, vol. 171(C).
    9. Hrozencik, Aaron & Aillery, Marcel, 2021. "Trends in U.S. Irrigated Agriculture: Increasing Resilience Under Water Supply Scarcity," USDA Miscellaneous 316792, United States Department of Agriculture.
    10. Abdul Nafeo Abdulai & Awal Abdul-Rahaman & Gazali Issahaku, 2021. "Adoption and diffusion of conservation agriculture technology in Zambia: the role of social and institutional networks," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(4), pages 761-780, October.
    11. Galioto, F., 2018. "The value of information for the management of water resources in agriculture: comparing the economic impact of alternative sources of information to schedule irrigation," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277384, International Association of Agricultural Economists.
    12. Amanda R. Carrico & Heather Barnes Truelove & Nicholas E. Williams, 2019. "Social capital and resilience to drought among smallholding farmers in Sri Lanka," Climatic Change, Springer, vol. 155(2), pages 195-213, July.
    13. Xuehao Bi & Bo Wen & Wei Zou, 2022. "The Role of Internet Development in China’s Grain Production: Specific Path and Dialectical Perspective," Agriculture, MDPI, vol. 12(3), pages 1-14, March.
    14. Sene, Ligane Massamba, 2015. "Connectivity as engine for productivity among smallholder peanut farmers in Senegal," 2015 Conference, August 9-14, 2015, Milan, Italy 212263, International Association of Agricultural Economists.
    15. Khataza, Robertson R.B. & Doole, Graeme J. & Kragt, Marit E. & Hailu, Atakelty, 2018. "Information acquisition, learning and the adoption of conservation agriculture in Malawi: A discrete-time duration analysis," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 299-307.
    16. Rosene, Robert & Kovacs, Kent F., 2018. "Factors influencing the adoption of irrigation measurement tools in the Arkansas Delta," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266445, Southern Agricultural Economics Association.
    17. Levidow, Les & Zaccaria, Daniele & Maia, Rodrigo & Vivas, Eduardo & Todorovic, Mladen & Scardigno, Alessandra, 2014. "Improving water-efficient irrigation: Prospects and difficulties of innovative practices," Agricultural Water Management, Elsevier, vol. 146(C), pages 84-94.
    18. Katungi, Enid & Larochelle, Catherine & Mugaboo, Josephat & Buruchara, Robin, 2016. "Estimating the impact of climbing bean adoption on bean productivity in Rwanda: Endogenous Switching Regression," 2016 Fifth International Conference, September 23-26, 2016, Addis Ababa, Ethiopia 246456, African Association of Agricultural Economists (AAAE).
    19. Wuepper, David & Sauer, Johannes & Kleemann, Linda, 2014. "Sustainable intensification of pineapple farming in Ghana: Training and complexity," Kiel Working Papers 1973, Kiel Institute for the World Economy (IfW Kiel).
    20. Mpanga, Isaac K. & Idowu, Omololu John, 2021. "A Decade of Irrigation Water use trends in Southwestern USA: The Role of Irrigation Technology, Best Management Practices, and Outreach Education Programs," Agricultural Water Management, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:305-:d:128566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.