IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4382-d185104.html
   My bibliography  Save this article

Social Life Cycle Assessment: Specific Approach and Case Study for Switzerland

Author

Listed:
  • Evelyn Lobsiger-Kägi

    (Institute of Sustainable Development, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland
    RHYSearch, Center for Research and Innovation, 9471 Buchs, Switzerland)

  • Luis López

    (Institute of Sustainable Development, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

  • Tobias Kuehn

    (Institute of Sustainable Development, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

  • Raoul Roth

    (RHYSearch, Center for Research and Innovation, 9471 Buchs, Switzerland)

  • Vicente Carabias

    (Institute of Sustainable Development, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

  • Christian Zipper

    (Institute of Sustainable Development, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

Abstract

This article proposes a specific social life cycle assessment (S-LCA) approach, to be applied in a case study on energy production in Switzerland. The aim of the present study is to describe the social conditions along the global supply chains and to compare them with the social situation in Switzerland. Therefore, a specific S-LCA methodology was developed that combines a relevance analysis with a performance reference point (PRP) assessment. The relevance analysis is carried out to identify the most relevant unit processes and S-LCA indicators and the Swiss PRPs (SPRPs) are designed to compare the social issues along the value chain to the situation in Switzerland. The methodology was applied to two life cycle stages of the copper supply chain (resource extraction and wire production), relevant for the production of renewable energy technologies, where it was found that the most critical step is mining in the Democratic Republic of the Congo (DRC) due to the artisanal way of mining. The proposed methodology offers a comprehensive overview for the analysis of supply chains and the comparison of different life cycle phases. Nevertheless, the methodology can result in a very coarse resolution with low validity. However, if the data and the results are treated transparently, they provide meaningful information about the social conditions along the supply chain.

Suggested Citation

  • Evelyn Lobsiger-Kägi & Luis López & Tobias Kuehn & Raoul Roth & Vicente Carabias & Christian Zipper, 2018. "Social Life Cycle Assessment: Specific Approach and Case Study for Switzerland," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4382-:d:185104
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4382/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4382/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maxim, Alexandru, 2014. "Sustainability assessment of electricity generation technologies using weighted multi-criteria decision analysis," Energy Policy, Elsevier, vol. 65(C), pages 284-297.
    2. Blanca Corona & Kossara P. Bozhilova†Kisheva & Stig I. Olsen & Guillermo San Miguel, 2017. "Social Life Cycle Assessment of a Concentrated Solar Power Plant in Spain: A Methodological Proposal," Journal of Industrial Ecology, Yale University, vol. 21(6), pages 1566-1577, December.
    3. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    4. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    5. Ruqun Wu & Dan Yang & Jiquan Chen, 2014. "Social Life Cycle Assessment Revisited," Sustainability, MDPI, vol. 6(7), pages 1-27, July.
    6. Jeffrey D. Sachs & Richard Layard & John F. Helliwell, 2018. "World Happiness Report 2018," Working Papers id:12761, eSocialSciences.
    7. Sabrina Neugebauer & Marzia Traverso & René Scheumann & Ya-Ju Chang & Kirana Wolf & Matthias Finkbeiner, 2014. "Impact Pathways to Address Social Well-Being and Social Justice in SLCA—Fair Wage and Level of Education," Sustainability, MDPI, vol. 6(8), pages 1-19, July.
    8. Mostafa Shaaban & Jürgen Scheffran & Jürgen Böhner & Mohamed S. Elsobki, 2018. "Sustainability Assessment of Electricity Generation Technologies in Egypt Using Multi-Criteria Decision Analysis," Energies, MDPI, vol. 11(5), pages 1-25, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somayeh Rezaei Kalvani & Amir Hamzah Sharaai & Ibrahim Kabir Abdullahi, 2021. "Social Consideration in Product Life Cycle for Product Social Sustainability," Sustainability, MDPI, vol. 13(20), pages 1-22, October.
    2. Louisa Pollok & Sebastian Spierling & Hans-Josef Endres & Ulrike Grote, 2021. "Social Life Cycle Assessments: A Review on Past Development, Advances and Methodological Challenges," Sustainability, MDPI, vol. 13(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchmayr, A. & Verhofstadt, E. & Van Ootegem, L. & Sanjuan Delmás, D. & Thomassen, G. & Dewulf, J., 2021. "The path to sustainable energy supply systems: Proposal of an integrative sustainability assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Paula Donaduzzi Rigo & Graciele Rediske & Carmen Brum Rosa & Natália Gava Gastaldo & Leandro Michels & Alvaro Luiz Neuenfeldt Júnior & Julio Cezar Mairesse Siluk, 2020. "Renewable Energy Problems: Exploring the Methods to Support the Decision-Making Process," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    3. Ishizaka, Alessio & Siraj, Sajid & Nemery, Philippe, 2016. "Which energy mix for the UK (United Kingdom)? An evolutive descriptive mapping with the integrated GAIA (graphical analysis for interactive aid)–AHP (analytic hierarchy process) visualization tool," Energy, Elsevier, vol. 95(C), pages 602-611.
    4. Hannah Karlewski & Annekatrin Lehmann & Klaus Ruhland & Matthias Finkbeiner, 2019. "A Practical Approach for Social Life Cycle Assessment in the Automotive Industry," Resources, MDPI, vol. 8(3), pages 1-60, August.
    5. Louisa Pollok & Sebastian Spierling & Hans-Josef Endres & Ulrike Grote, 2021. "Social Life Cycle Assessments: A Review on Past Development, Advances and Methodological Challenges," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    6. Sara Miñarro & Victoria Reyes-García & Shankar Aswani & Samiya Selim & Christopher P Barrington-Leigh & Eric D Galbraith, 2021. "Happy without money: Minimally monetized societies can exhibit high subjective well-being," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
    7. Paulo Antônio Xavier Furtado & Antônio Vanderley Herrero Sola, 2020. "Fuzzy Complex Proportional Assessment Applied in Location Selection for Installation of Photovoltaic Plants," Energies, MDPI, vol. 13(23), pages 1-20, November.
    8. Urošević, Branka Gvozdenac & Marinović, Budimirka, 2021. "Ranking construction of small hydro power plants using multi-criteria decision analysis," Renewable Energy, Elsevier, vol. 172(C), pages 1174-1183.
    9. Muhammad Salman Shahid & Seun Osonuga & Nana Kofi Twum-Duah & Sacha Hodencq & Benoit Delinchant & Frédéric Wurtz, 2023. "An Assessment of Energy Flexibility Solutions from the Perspective of Low-Tech," Energies, MDPI, vol. 16(7), pages 1-29, April.
    10. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Rivero-Iglesias, Jose M. & Puente, Javier & Fernandez, Isabel & León, Omar, 2023. "Integrated model for the assessment of power generation alternatives through analytic hierarchy process and a fuzzy inference system. Case study of Spain," Renewable Energy, Elsevier, vol. 211(C), pages 563-581.
    12. Abdulla Alabbasi & Jhuma Sadhukhan & Matthew Leach & Mohammed Sanduk, 2022. "Sustainable Indicators for Integrating Renewable Energy in Bahrain’s Power Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    13. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Thushara, De Silva M. & Hornberger, George M. & Baroud, Hiba, 2019. "Decision analysis to support the choice of a future power generation pathway for Sri Lanka," Applied Energy, Elsevier, vol. 240(C), pages 680-697.
    15. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    16. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    17. Ramchandra Bhandari & Benjamin Eduardo Arce & Vittorio Sessa & Rabani Adamou, 2021. "Sustainability Assessment of Electricity Generation in Niger Using a Weighted Multi-Criteria Decision Approach," Sustainability, MDPI, vol. 13(1), pages 1-25, January.
    18. Seddiki, Mohammed & Bennadji, Amar, 2019. "Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 101-117.
    19. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    20. T.E.T Dantas & S.R Soares, 2022. "Systematic literature review on the application of life cycle sustainability assessment in the energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1583-1615, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4382-:d:185104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.