IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i9p151-d620762.html
   My bibliography  Save this article

Coherent Mortality Forecasting for Less Developed Countries

Author

Listed:
  • Hong Li

    (Department of Economics and Finance, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Yang Lu

    (Department of Mathematics and Statistics, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Pintao Lyu

    (Department of Econometrics and OR, Tilburg University, 2591 TV The Hague, The Netherlands)

Abstract

This paper proposes a coherent multi-population approach to mortality forecasting for less developed countries. The majority of these countries have witnessed faster mortality declines among the young and the working age populations during the past few decades, whereas in the more developed countries, the contemporary mortality declines have been more substantial among the elders. Along with the socioeconomic developments, the mortality patterns of the less developed countries may become closer to those of the more developed countries. As a consequence, forecasting the long-term mortality of a less developed country by simply extrapolating its historical patterns might lead to implausible results. As an alternative, this paper proposes to incorporate the mortality patterns of a group of more developed countries as the benchmark to improve the forecast for a less developed one. With long-term, between-country coherence in mind, we allow the less developed country’s age-specific mortality improvement rates to gradually converge with those of the benchmark countries during the projection phase. Further, we employ a data-driven, threshold hitting approach to control the speed of this convergence. Our method is applied to China, Brazil, and Nigeria. We conclude that taking into account the gradual convergence of mortality patterns can lead to more reasonable long-term forecasts for less developed countries.

Suggested Citation

  • Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:9:p:151-:d:620762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/9/151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/9/151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Huang, Fei & Browne, Bridget, 2017. "Mortality forecasting using a modified Continuous Mortality Investigation Mortality Projections Model for China I: methodology and country-level results," Annals of Actuarial Science, Cambridge University Press, vol. 11(1), pages 20-45, March.
    4. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    5. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    6. Marc A Jeuland & David E Fuente & Semra Ozdemir & Maura C Allaire & Dale Whittington, 2013. "The Long-Term Dynamics of Mortality Benefits from Improved Water and Sanitation in Less Developed Countries," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-16, October.
    7. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    8. Wolfgang Lutz & Warren Sanderson & Sergei Scherbov, 2008. "The coming acceleration of global population ageing," Nature, Nature, vol. 451(7179), pages 716-719, February.
    9. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    10. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    11. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    12. Li, Hong & De Waegenaere, Anja & Melenberg, Bertrand, 2015. "The choice of sample size for mortality forecasting: A Bayesian learning approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 153-168.
    13. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    14. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    15. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
    16. Kirill F. Andreev & James W. Vaupel, 2006. "Forecasts of cohort mortality after age 50," MPIDR Working Papers WP-2006-012, Max Planck Institute for Demographic Research, Rostock, Germany.
    17. Hong Li & Yang Lu, 2017. "A Bayesian non-parametric model for small population mortality," Post-Print hal-02084918, HAL.
    18. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    19. Shripad Tuljapurkar & Nan Li & Carl Boe, 2000. "A universal pattern of mortality decline in the G7 countries," Nature, Nature, vol. 405(6788), pages 789-792, June.
    20. Li, Hong, 2018. "Dynamic Hedging Of Longevity Risk: The Effect Of Trading Frequency," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 197-232, January.
    21. Torri, Tiziana & Vaupel, James W., 2012. "Forecasting life expectancy in an international context," International Journal of Forecasting, Elsevier, vol. 28(2), pages 519-531.
    22. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    23. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Livia CEBOTARI, 2021. "Eu-Russian Economic Relations: From Cooperation To Confrontation," EURINT, Centre for European Studies, Alexandru Ioan Cuza University, vol. 8, pages 41-55, July.
    2. Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
    3. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    4. Thipphavong, Viengsavang & Vanhnalat, Bounlert & Vidavong, Chanhphasouk & Bodhisane, Somdeth, 2022. "The Export Potential Of Laos Agri-Food To The Eu Market," PRCI Research Papers 324028, Michigan State University, Department of Agricultural, Food and Resource Economics, Food Security Group.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
    4. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    5. Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    8. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    9. Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
    10. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    11. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    12. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    13. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    14. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
    15. Chen, An & Li, Hong & Schultze, Mark B., 2023. "Optimal longevity risk transfer under asymmetric information," Economic Modelling, Elsevier, vol. 120(C).
    16. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    17. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    18. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
    19. Péter Vékás, 2020. "Rotation of the age pattern of mortality improvements in the European Union," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1031-1048, September.
    20. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:9:p:151-:d:620762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.