IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v6y2018i3p97-d169588.html
   My bibliography  Save this article

General Quantile Time Series Regressions for Applications in Population Demographics

Author

Listed:
  • Gareth W. Peters

    (Department of Actuarial Mathematics and Statistics, Heriot-Watt University, Edinburgh EH14 4AS, UK)

Abstract

The paper addresses three objectives: the first is a presentation and overview of some important developments in quantile times series approaches relevant to demographic applications—secondly, development of a general framework to represent quantile regression models in a unifying manner, which can further enhance practical extensions and assist in formation of connections between existing models for practitioners. In this regard, the core theme of the paper is to provide perspectives to a general audience of core components that go into construction of a quantile time series model. The third objective is to compare and discuss the application of the different quantile time series models on several sets of interesting demographic and mortality related time series data sets. This has relevance to life insurance analysis and the resulting exploration undertaken includes applications in mortality, fertility, births and morbidity data for several countries, with a more detailed analysis of regional data in England, Wales and Scotland.

Suggested Citation

  • Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
  • Handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:97-:d:169588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/6/3/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/6/3/97/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.
    2. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers CWP36/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    4. Matthias Fischer, 2010. "Generalized Tukey-type distributions with application to financial and teletraffic data," Statistical Papers, Springer, vol. 51(1), pages 41-56, January.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. Sangyeol Lee & Jungsik Noh, 2013. "Quantile Regression Estimator for GARCH Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 2-20, March.
    7. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    8. Gareth W. Peters & Wilson Y. Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-moments," Papers 1603.01041, arXiv.org.
    9. Yuzhi Cai, 2010. "Forecasting for quantile self-exciting threshold autoregressive time series models," Biometrika, Biometrika Trust, vol. 97(1), pages 199-208.
    10. Yuzhi Cai & Gabriel Montes‐Rojas & Jose Olmo, 2013. "Quantile Double AR Time Series Models for Financial Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 551-560, September.
    11. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    12. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    13. Wilson Ye Chen & Gareth W. Peters & Richard H. Gerlach & Scott A. Sisson, 2017. "Dynamic Quantile Function Models," Papers 1707.02587, arXiv.org, revised May 2021.
    14. Han, Heejoon & Linton, Oliver & Oka, Tatsushi & Whang, Yoon-Jae, 2016. "The cross-quantilogram: Measuring quantile dependence and testing directional predictability between time series," Journal of Econometrics, Elsevier, vol. 193(1), pages 251-270.
    15. Dong, Alice X.D. & Chan, Jennifer S.K. & Peters, Gareth W., 2015. "Risk Margin Quantile Function Via Parametric And Non-Parametric Bayesian Approaches," ASTIN Bulletin, Cambridge University Press, vol. 45(3), pages 503-550, September.
    16. Yuzhi Cai & Julian Stander, 2008. "Quantile self‐exciting threshold autoregressive time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 186-202, January.
    17. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    18. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    20. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    21. Andrew A. Weiss, 1984. "Arma Models With Arch Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 129-143, March.
    22. Degen, Matthias & Embrechts, Paul & Lambrigger, Dominik D., 2007. "The Quantitative Modeling of Operational Risk: Between G-and-H and EVT," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 265-291, November.
    23. Samuel Kotz & Donatella Vicari, 2005. "Survey of developments in the theory of continuous skewed distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 225-261.
    24. Dong, A.X.D. & Chan, J.S.K., 2013. "Bayesian analysis of loss reserving using dynamic models with generalized beta distribution," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 355-365.
    25. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    26. Yuzhi Cai, 2016. "A General Quantile Function Model for Economic and Financial Time Series," Econometric Reviews, Taylor & Francis Journals, vol. 35(7), pages 1173-1193, August.
    27. Koenker, Roger & Zhao, Quanshui, 1996. "Conditional Quantile Estimation and Inference for Arch Models," Econometric Theory, Cambridge University Press, vol. 12(5), pages 793-813, December.
    28. Antonio F. Galvao & Gabriel Montes-Rojas, 2015. "On Bootstrap Inference for Quantile Regression Panel Data: A Monte Carlo Study," Econometrics, MDPI, vol. 3(3), pages 1-13, September.
    29. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    30. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(1), pages 46-68, March.
    31. Adelchi Azzalini, 2005. "The Skew‐normal Distribution and Related Multivariate Families," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 159-188, June.
    32. Marc G. Genton, 2005. "Discussion of ‘‘The Skew‐normal’’," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 189-198, June.
    33. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
    34. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    35. Thompson, Paul & Cai, Yuzhi & Moyeed, Rana & Reeve, Dominic & Stander, Julian, 2010. "Bayesian nonparametric quantile regression using splines," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1138-1150, April.
    36. Gareth W. Peters & Wilson Ye Chen & Richard H. Gerlach, 2016. "Estimating Quantile Families of Loss Distributions for Non-Life Insurance Modelling via L-Moments," Risks, MDPI, vol. 4(2), pages 1-41, May.
    37. Sung Jae Jun & Tony Lancaster, 2006. "Bayesian quantile regression," CeMMAP working papers CWP05/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    38. Kabir K. Dutta & David F. Babbel, 2002. "On Measuring Skewness and Kurtosis in Short Rate Distributions: The Case of the US Dollar London Inter Bank Offer Rates," Center for Financial Institutions Working Papers 02-25, Wharton School Center for Financial Institutions, University of Pennsylvania.
    39. William T. Shaw & Ian R. C. Buckley, 2009. "The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map," Papers 0901.0434, arXiv.org.
    40. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2021. "Stochastic measure distortions induced by quantile processes for risk quantification and valuation," Papers 2201.02045, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holly Brannelly & Andrea Macrina & Gareth W. Peters, 2019. "Quantile Diffusions for Risk Analysis," Papers 1912.10866, arXiv.org, revised Sep 2021.
    2. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    3. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    4. Gaglianone, Wagner Piazza & Lima, Luiz Renato & Linton, Oliver & Smith, Daniel R., 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 150-160.
    5. Chan Jennifer So Kuen & Nitithumbundit Thanakorn & Peiris Shelton & Ng Kok-Haur, 2019. "Efficient estimation of financial risk by regressing the quantiles of parametric distributions: An application to CARR models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(2), pages 1-22, April.
    6. Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
    7. Yuzhi Cai & Guodong Li, 2018. "A novel approach to modelling the distribution of financial returns," Working Papers 2018-22, Swansea University, School of Management.
    8. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    9. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    10. Cathy Chen & Richard Gerlach, 2013. "Semi-parametric quantile estimation for double threshold autoregressive models with heteroskedasticity," Computational Statistics, Springer, vol. 28(3), pages 1103-1131, June.
    11. Jürgen Franke & Peter Mwita & Weining Wang, 2015. "Nonparametric estimates for conditional quantiles of time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 107-130, January.
    12. Zhao, Yixiu & Upreti, Vineet & Cai, Yuzhi, 2021. "Stock returns, quantile autocorrelation, and volatility forecasting," International Review of Financial Analysis, Elsevier, vol. 73(C).
    13. Wu, Qi & Yan, Xing, 2019. "Capturing deep tail risk via sequential learning of quantile dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    14. Rita Pimentel & Morten Risstad & Sjur Westgaard, 2022. "Predicting interest rate distributions using PCA & quantile regression," Digital Finance, Springer, vol. 4(4), pages 291-311, December.
    15. Damian Clarke & Manuel Llorca Jaña & Daniel Pailañir, 2023. "The use of quantile methods in economic history," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 56(2), pages 115-132, April.
    16. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    17. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    18. Jungsik Noh & Sangyeol Lee, 2016. "Quantile Regression for Location-Scale Time Series Models with Conditional Heteroscedasticity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 700-720, September.
    19. Tan, Shay-Kee & Ng, Kok-Haur & Chan, Jennifer So-Kuen & Mohamed, Ibrahim, 2019. "Quantile range-based volatility measure for modelling and forecasting volatility using high frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 537-551.
    20. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:6:y:2018:i:3:p:97-:d:169588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.