IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v9y2020i9p110-d409429.html
   My bibliography  Save this article

Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates

Author

Listed:
  • Sabina Kordana-Obuch

    (Department of Infrastructure and Water Management, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland)

  • Mariusz Starzec

    (Department of Infrastructure and Water Management, Rzeszow University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszow, Poland)

Abstract

Stormwater is a valuable resource, whose management in harmony with nature is one of the main challenges of modern water management. The problems encountered are additionally exacerbated by the lack of space for the development of sustainable drainage systems. For that reason, new housing estates should be designed considering efficient stormwater management. This paper assesses five stormwater management models to determine the statistically most appropriate model for managing stormwater in newly designed multi-family housing estates using multi-criteria analysis. Various options were assessed by means of the scoring method based on six groups of criteria (political, economic, social, technological, legal, and environmental). The research considered the different views and priorities of the experts involved in stormwater management in Poland. A survey conducted among them showed that the statistically most suitable way of managing stormwater is its infiltration into the ground with the use of infiltration basins or tanks. Only if the possibility of their application is excluded, should the application of other models of stormwater management, especially its retention, be considered. It is expected that the research results presented in this paper will be a guide for investors and developers, and their use will allow people who are not experts in the field of stormwater management to make appropriate decisions.

Suggested Citation

  • Sabina Kordana-Obuch & Mariusz Starzec, 2020. "Statistical Approach to the Problem of Selecting the Most Appropriate Model for Managing Stormwater in Newly Designed Multi-Family Housing Estates," Resources, MDPI, vol. 9(9), pages 1-20, September.
  • Handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:110-:d:409429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/9/9/110/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/9/9/110/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    2. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    3. Martin, C. & Ruperd, Y. & Legret, M., 2007. "Urban stormwater drainage management: The development of a multicriteria decision aid approach for best management practices," European Journal of Operational Research, Elsevier, vol. 181(1), pages 338-349, August.
    4. V. M. Jayasooriya & S. Muthukumaran & A. W. M. Ng & B. J. C. Perera, 2018. "Multi Criteria Decision Making in Selecting Stormwater Management Green Infrastructure for Industrial areas Part 2: A Case Study with TOPSIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4297-4312, October.
    5. Daniel Słyś & Agnieszka Stec, 2020. "Centralized or Decentralized Rainwater Harvesting Systems: A Case Study," Resources, MDPI, vol. 9(1), pages 1-18, January.
    6. Sabina Kordana & Daniel Słyś, 2020. "Decision Criteria for the Development of Stormwater Management Systems in Poland," Resources, MDPI, vol. 9(2), pages 1-21, February.
    7. Silvestre García de Jalón & Aline Chiabai & Alyvia Mc Tague & Naiara Artaza & Amaia de Ayala & Sonia Quiroga & Hanneke Kruize & Cristina Suárez & Ruth Bell & Timothy Taylor, 2020. "Providing Access to Urban Green Spaces: A Participatory Benefit-Cost Analysis in Spain," IJERPH, MDPI, vol. 17(8), pages 1-20, April.
    8. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    9. Yi-Ru Chen & Chao-Hsien Yeh & Bofu Yu, 2011. "Integrated application of the analytic hierarchy process and the geographic information system for flood risk assessment and flood plain management in Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1261-1276, December.
    10. Bykowa Elena & Gerasimova Irina Gennadyevna, 2019. "Land Plot Selection Rationale for the Location of Linear Facilities," Land, MDPI, vol. 8(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Stec & Daniel Słyś, 2022. "Financial and Social Factors Influencing the Use of Unconventional Water Systems in Single-Family Houses in Eight European Countries," Resources, MDPI, vol. 11(2), pages 1-25, January.
    2. Monika Zdeb & Justyna Zamorska & Dorota Papciak & Agata Skwarczyńska-Wojsa, 2021. "Investigation of Microbiological Quality Changes of Roof-Harvested Rainwater Stored in the Tanks," Resources, MDPI, vol. 10(10), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariusz Starzec & Józef Dziopak, 2020. "A Case Study of the Retention Efficiency of a Traditional and Innovative Drainage System," Resources, MDPI, vol. 9(9), pages 1-19, September.
    2. Kamil Pochwat, 2022. "Assessment of Rainwater Retention Efficiency in Urban Drainage Systems—Model Studies," Resources, MDPI, vol. 11(2), pages 1-23, January.
    3. Mariusz Starzec & Sabina Kordana-Obuch & Daniel Słyś, 2023. "Assessment of the Feasibility of Implementing a Flash Flood Early Warning System in a Small Catchment Area," Sustainability, MDPI, vol. 15(10), pages 1-43, May.
    4. Shanshan Hu & Xiangjun Cheng & Demin Zhou & Hong Zhang, 2017. "GIS-based flood risk assessment in suburban areas: a case study of the Fangshan District, Beijing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1525-1543, July.
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Ebrahim Ahmadisharaf & Alfred Kalyanapu & Eun-Sung Chung, 2015. "Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2543-2561, June.
    7. Abdulwaheed Tella & Abdul-Lateef Balogun, 2020. "Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2277-2306, December.
    8. Pablo Aragonés‐Beltrán & Mª. Carmen González‐Cruz & Astrid León‐Camargo & Rosario Viñoles‐Cebolla, 2023. "Assessment of regional development needs according to criteria based on the Sustainable Development Goals in the Meta Region (Colombia)," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 1101-1121, April.
    9. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    10. Chetan A. Jhaveri & Jitendra M. Nenavani, 2020. "Evaluation of eTail Services Quality: AHP Approach," Vision, , vol. 24(3), pages 310-319, September.
    11. Laila Oubahman & Szabolcs Duleba, 2022. "A Comparative Analysis of Homogenous Groups’ Preferences by Using AIP and AIJ Group AHP-PROMETHEE Model," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
    12. Sharma, Mahak & Sehrawat, Rajat, 2020. "A hybrid multi-criteria decision-making method for cloud adoption: Evidence from the healthcare sector," Technology in Society, Elsevier, vol. 61(C).
    13. Wen-Chun Lo & Ting-Chi Tsao & Chih-Hao Hsu, 2012. "Building vulnerability to debris flows in Taiwan: a preliminary study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(3), pages 2107-2128, December.
    14. Haddad, Brahim & Liazid, Abdelkrim & Ferreira, Paula, 2017. "A multi-criteria approach to rank renewables for the Algerian electricity system," Renewable Energy, Elsevier, vol. 107(C), pages 462-472.
    15. Andreas Schiessl & Richard Müller & Rebekka Volk & Konrad Zimmer & Patrick Breun & Frank Schultmann, 2020. "Integrating site-specific environmental impact assessment in supplier selection: exemplary application to steel procurement," Journal of Business Economics, Springer, vol. 90(9), pages 1409-1457, November.
    16. Crary, Michael & Nozick, L. K. & Whitaker, L. R., 2002. "Sizing the US destroyer fleet," European Journal of Operational Research, Elsevier, vol. 136(3), pages 680-695, February.
    17. Giada Feletti & Mariachiara Piraina & Boris Petrenj & Paolo Trucco, 2022. "Collaborative capability building for critical infrastructure resilience: assessment and selection of good practices," Environment Systems and Decisions, Springer, vol. 42(2), pages 207-233, June.
    18. Pérez-Mesa, Juan Carlos & Galdeano-Gómez, Emilio & Salinas Andújar, Jose A., 2012. "Logistics network and externalities for short sea transport: An analysis of horticultural exports from southeast Spain," Transport Policy, Elsevier, vol. 24(C), pages 188-198.
    19. José María Moreno-Jiménez & Manuel Salvador & Pilar Gargallo & Alfredo Altuzarra, 2016. "Systemic decision making in AHP: a Bayesian approach," Annals of Operations Research, Springer, vol. 245(1), pages 261-284, October.
    20. Rabelo, Luis & Eskandari, Hamidreza & Shaalan, Tarek & Helal, Magdy, 2007. "Value chain analysis using hybrid simulation and AHP," International Journal of Production Economics, Elsevier, vol. 105(2), pages 536-547, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:9:y:2020:i:9:p:110-:d:409429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.